The rapid increase in resource sharing across domains in the cloud comput- ing environment makes the task of managing inter-domain access control policy integration difficult for the security administrators. Al- thoug...The rapid increase in resource sharing across domains in the cloud comput- ing environment makes the task of managing inter-domain access control policy integration difficult for the security administrators. Al- though a number of policy integration and sec- urity analysis mechanisms have been devel- oped, few focus on enabling the average ad- ministrator by providing an intuitive cognitive sense about the integrated policies, which considerably undermines the usability factor. In this paper we propose a visualization flame- work for inter-domain access control policy integration, which integrates Role Based Ac- cess Control (RBAC) policies on the basis of role-mapping and then visualizes the inte- grated result. The role mapping algorithm in the framework considers the hybrid role hier- archy. It can not only satisfy the security con- straints of non-cyclic inheritance and separa- tion of duty but also make visualization easier. The framework uses role-permission trees and semantic substrates to visualize the integrated policies. Through the interactive policy query visualization, the average administrator can gain an intuitive understanding of the policy integration result.展开更多
Rapidly and accurately assessing the geometric characteristics of coarse aggregate particles is crucial for ensuring pavement performance in highway engineering.This article introduces an innovative system for the thr...Rapidly and accurately assessing the geometric characteristics of coarse aggregate particles is crucial for ensuring pavement performance in highway engineering.This article introduces an innovative system for the three-dimensional(3D)surface reconstruction of coarse aggregate particles using occlusion-free multi-view imaging.The system captures synchronized images of particles in free fall,employing a matte sphere and a nonlinear optimization approach to estimate the camera projection matrices.A pre-trained segmentation model is utilized to eliminate the background of the images.The Shape from Silhouettes(SfS)algorithm is then applied to generate 3D voxel data,followed by the Marching Cubes algorithm to construct the 3D surface contour.Validation against standard parts and diverse coarse aggregate particles confirms the method's high accuracy,with an average measurement precision of 0.434 mm and a significant increase in scanning and reconstruction efficiency.展开更多
基金supported in part by National Key Basic Research Program of China (973 Program) under Grant No.2013CB329603National Natural Science Foundation of China under Grant No.60903191
文摘The rapid increase in resource sharing across domains in the cloud comput- ing environment makes the task of managing inter-domain access control policy integration difficult for the security administrators. Al- though a number of policy integration and sec- urity analysis mechanisms have been devel- oped, few focus on enabling the average ad- ministrator by providing an intuitive cognitive sense about the integrated policies, which considerably undermines the usability factor. In this paper we propose a visualization flame- work for inter-domain access control policy integration, which integrates Role Based Ac- cess Control (RBAC) policies on the basis of role-mapping and then visualizes the inte- grated result. The role mapping algorithm in the framework considers the hybrid role hier- archy. It can not only satisfy the security con- straints of non-cyclic inheritance and separa- tion of duty but also make visualization easier. The framework uses role-permission trees and semantic substrates to visualize the integrated policies. Through the interactive policy query visualization, the average administrator can gain an intuitive understanding of the policy integration result.
基金Supported by the Key R&D Projects in Shaanxi Province(2022JBGS3-08)。
文摘Rapidly and accurately assessing the geometric characteristics of coarse aggregate particles is crucial for ensuring pavement performance in highway engineering.This article introduces an innovative system for the three-dimensional(3D)surface reconstruction of coarse aggregate particles using occlusion-free multi-view imaging.The system captures synchronized images of particles in free fall,employing a matte sphere and a nonlinear optimization approach to estimate the camera projection matrices.A pre-trained segmentation model is utilized to eliminate the background of the images.The Shape from Silhouettes(SfS)algorithm is then applied to generate 3D voxel data,followed by the Marching Cubes algorithm to construct the 3D surface contour.Validation against standard parts and diverse coarse aggregate particles confirms the method's high accuracy,with an average measurement precision of 0.434 mm and a significant increase in scanning and reconstruction efficiency.