In the flexible job-shop scheduling problem (FJSP), each operation has to be assigned to a machine from a set of capable machines before alocating the assigned operations on all machines. To solve the multi-objectiv...In the flexible job-shop scheduling problem (FJSP), each operation has to be assigned to a machine from a set of capable machines before alocating the assigned operations on all machines. To solve the multi-objective FJSP, the Grantt graph oriented string representation (GOSR) and the basic manipulation of the genetic algorithm operator are presented. An integrated operator genetic algorithm (IOGA) and its process are described. Comparison between computational results and the latest research shows that the proposed algorithm is effective in reducing the total workload of all machines, the makespan and the critical machine workload.展开更多
In machine learning,randomness is a crucial factor in the success of ensemble learning,and it can be injected into tree-based ensembles by rotating the feature space.However,it is a common practice to rotate the featu...In machine learning,randomness is a crucial factor in the success of ensemble learning,and it can be injected into tree-based ensembles by rotating the feature space.However,it is a common practice to rotate the feature space randomly.Thus,a large number of trees are required to ensure the performance of the ensemble model.This random rotation method is theoretically feasible,but it requires massive computing resources,potentially restricting its applications.A multimodal genetic algorithm based rotation forest(MGARF)algorithm is proposed in this paper to solve this problem.It is a tree-based ensemble learning algorithm for classification,taking advantage of the characteristic of trees to inject randomness by feature rotation.However,this algorithm attempts to select a subset of more diverse and accurate base learners using the multimodal optimization method.The classification accuracy of the proposed MGARF algorithm was evaluated by comparing it with the original random forest and random rotation ensemble methods on 23 UCI classification datasets.Experimental results show that the MGARF method outperforms the other methods,and the number of base learners in MGARF models is much fewer.展开更多
By avoiding or reducing the production of waste, waste minimization is an effective approach to solve the pollution problem in chemical industry. Process integration supported by multi-objective optimization provides ...By avoiding or reducing the production of waste, waste minimization is an effective approach to solve the pollution problem in chemical industry. Process integration supported by multi-objective optimization provides a framework for process design or process retrofit by simultaneously optimizing on the aspects of environment and economics. Multi-objective genetic algorithm is applied in this area as the solution approach for the multi-objective optimization problem.展开更多
In the photogrammetry,some researchers have applied genetic algorithms in aerial image texture classification and reducing hyper_spectrum remote sensing data.Genetic algorithm can rapidly find the solutions which are ...In the photogrammetry,some researchers have applied genetic algorithms in aerial image texture classification and reducing hyper_spectrum remote sensing data.Genetic algorithm can rapidly find the solutions which are close to the optimal solution.But it is not easy to find the optimal solution.In order to solve the problem,a cooperative evolution idea integrating genetic algorithm and ant colony algorithm is presented in this paper.On the basis of the advantages of ant colony algorithm,this paper proposes the method integrating genetic algorithms and ant colony algorithm to overcome the drawback of genetic algorithms.Moreover,the paper takes designing texture classification masks of aerial images as an example to illustrate the integration theory and procedures.展开更多
The component-based business architecture integration of military information systems is a popu- lar research topic in the field of military operational research. Identifying enterprise-level business components is an...The component-based business architecture integration of military information systems is a popu- lar research topic in the field of military operational research. Identifying enterprise-level business components is an important issue in business architecture integration. Currently used methodologies for business component identification tend to focus on software-level business components, and ignore such enterprise concerns in business architectures as organizations and resources. Moreover, approaches to enterprise-level business component identi- fication have proven laborious. In this study, we propose a novel approach to enterprise-level business component identification by considering overall cohesion, coupling, granularity, maintainability, and reusability. We first define and formulate enterprise-level business components based on the component business model and the Department of Defense Architecture Framework (DoDAF) models. To quantify the indices of business components, we formulate a create, read, update, and delete (CRUD) matrix and use six metrics as criteria. We then formulate business com- ponent identification as a multi:objective optimization problem and solve it by a novel meta-heuristic optimization algorithm called the 'simulated annealing hybrid genetic algorithm (SHGA)'. Case studies showed that our approach is more practical and efficient for enterprise-level business component identification than prevalent approaches.展开更多
文摘In the flexible job-shop scheduling problem (FJSP), each operation has to be assigned to a machine from a set of capable machines before alocating the assigned operations on all machines. To solve the multi-objective FJSP, the Grantt graph oriented string representation (GOSR) and the basic manipulation of the genetic algorithm operator are presented. An integrated operator genetic algorithm (IOGA) and its process are described. Comparison between computational results and the latest research shows that the proposed algorithm is effective in reducing the total workload of all machines, the makespan and the critical machine workload.
基金Project(61603274)supported by the National Natural Science Foundation of ChinaProject(2017KJ249)supported by the Research Project of Tianjin Municipal Education Commission,China。
文摘In machine learning,randomness is a crucial factor in the success of ensemble learning,and it can be injected into tree-based ensembles by rotating the feature space.However,it is a common practice to rotate the feature space randomly.Thus,a large number of trees are required to ensure the performance of the ensemble model.This random rotation method is theoretically feasible,but it requires massive computing resources,potentially restricting its applications.A multimodal genetic algorithm based rotation forest(MGARF)algorithm is proposed in this paper to solve this problem.It is a tree-based ensemble learning algorithm for classification,taking advantage of the characteristic of trees to inject randomness by feature rotation.However,this algorithm attempts to select a subset of more diverse and accurate base learners using the multimodal optimization method.The classification accuracy of the proposed MGARF algorithm was evaluated by comparing it with the original random forest and random rotation ensemble methods on 23 UCI classification datasets.Experimental results show that the MGARF method outperforms the other methods,and the number of base learners in MGARF models is much fewer.
文摘By avoiding or reducing the production of waste, waste minimization is an effective approach to solve the pollution problem in chemical industry. Process integration supported by multi-objective optimization provides a framework for process design or process retrofit by simultaneously optimizing on the aspects of environment and economics. Multi-objective genetic algorithm is applied in this area as the solution approach for the multi-objective optimization problem.
文摘In the photogrammetry,some researchers have applied genetic algorithms in aerial image texture classification and reducing hyper_spectrum remote sensing data.Genetic algorithm can rapidly find the solutions which are close to the optimal solution.But it is not easy to find the optimal solution.In order to solve the problem,a cooperative evolution idea integrating genetic algorithm and ant colony algorithm is presented in this paper.On the basis of the advantages of ant colony algorithm,this paper proposes the method integrating genetic algorithms and ant colony algorithm to overcome the drawback of genetic algorithms.Moreover,the paper takes designing texture classification masks of aerial images as an example to illustrate the integration theory and procedures.
基金Project supported by the National.Natural Science Foundation of China (No. 71571189)
文摘The component-based business architecture integration of military information systems is a popu- lar research topic in the field of military operational research. Identifying enterprise-level business components is an important issue in business architecture integration. Currently used methodologies for business component identification tend to focus on software-level business components, and ignore such enterprise concerns in business architectures as organizations and resources. Moreover, approaches to enterprise-level business component identi- fication have proven laborious. In this study, we propose a novel approach to enterprise-level business component identification by considering overall cohesion, coupling, granularity, maintainability, and reusability. We first define and formulate enterprise-level business components based on the component business model and the Department of Defense Architecture Framework (DoDAF) models. To quantify the indices of business components, we formulate a create, read, update, and delete (CRUD) matrix and use six metrics as criteria. We then formulate business com- ponent identification as a multi:objective optimization problem and solve it by a novel meta-heuristic optimization algorithm called the 'simulated annealing hybrid genetic algorithm (SHGA)'. Case studies showed that our approach is more practical and efficient for enterprise-level business component identification than prevalent approaches.