期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
集成遗传算法及BP算法的潜在震源区划分 被引量:2
1
作者 周庆 叶洪 《地震学报》 CSCD 北大核心 2002年第6期647-652,共6页
以华南沿海地区为例,集成遗传算法与BP算法进行潜在震源区的划分. 用遗传算法辅助人工神经网络的设计,在无限的解空间中快速找到人工神经网络的最佳参数组合. 结果表明:由该分类系统划分出的不同震级上限的潜在震源区分布,反映了华南沿... 以华南沿海地区为例,集成遗传算法与BP算法进行潜在震源区的划分. 用遗传算法辅助人工神经网络的设计,在无限的解空间中快速找到人工神经网络的最佳参数组合. 结果表明:由该分类系统划分出的不同震级上限的潜在震源区分布,反映了华南沿海地区地震环境与地震发生的内在规律性,从而减少了人的主观判断影响. 展开更多
关键词 集成遗传算法 BP算法 华南地区 地理信息系统 潜在震源区
下载PDF
集成遗传算法下板料激光弯曲成形工艺优化 被引量:1
2
作者 王江涛 马景槐 申明倩 《锻压技术》 CAS CSCD 北大核心 2009年第5期156-158,共3页
将模拟退火的思想引入遗传算法,控制遗传算法的时间,提高运行效率。同时利用混沌优化处理初值,实现全局优化。利用惩罚函数法对目标函数的约束条件进行处理,扩大遗传算法的应用范围。并结合薄板料激光弯曲的例子,与标准遗传算法和神经... 将模拟退火的思想引入遗传算法,控制遗传算法的时间,提高运行效率。同时利用混沌优化处理初值,实现全局优化。利用惩罚函数法对目标函数的约束条件进行处理,扩大遗传算法的应用范围。并结合薄板料激光弯曲的例子,与标准遗传算法和神经网络算法进行了详细的比较。结果证明:集成遗传算法得到的工艺参数数值更合理,组合更优化。 展开更多
关键词 激光弯曲 混沌优化 惩罚函数 集成遗传算法
下载PDF
集成遗传算法在特征基因选取中的应用 被引量:1
3
作者 江健生 汪妍 《安徽工业大学学报(自然科学版)》 CAS 2020年第1期53-59,共7页
结合Filter和Wrapper方法的优点,提出一种基于集成遗传算法(FSEGA)的特征选择方法,用于从基因表达谱数据中选择特征基因。根据基因正负样本的分布关系定义信息指标过滤噪声基因,在递归特征消除过程中根据基因的集成权值生成候选基因子集... 结合Filter和Wrapper方法的优点,提出一种基于集成遗传算法(FSEGA)的特征选择方法,用于从基因表达谱数据中选择特征基因。根据基因正负样本的分布关系定义信息指标过滤噪声基因,在递归特征消除过程中根据基因的集成权值生成候选基因子集,选择分类测试中具有最高AUC(接收者工作特征曲线下的面积)值的候选基因子集作为基因表达谱数据集的特征基因子集,将支持向量机(SVM)用于算法的适应度函数,研究FSEGA方法与分类器算法之间的关系,对5个肿瘤特征基因表达谱数据集进行基因选取实验。结果表明,采用提出的集成特征选取方法选取的特征基因集合含丰富类别信息,重复性较好,提高了肿瘤特征基因选取的稳定性和鲁棒性。 展开更多
关键词 集成遗传算法 特征基因 特征选取 支持向量机 基因表达谱
下载PDF
集成多目标遗传算法在货位分配中的应用 被引量:7
4
作者 蔡安江 蔡曜 +1 位作者 郭师虹 耿晨 《机械设计与制造》 北大核心 2019年第5期95-98,共4页
根据效率优先原则、稳定性原则建立适合同端式出/入库立体仓库的多目标货位分配模型。基于向量评估、非支配排序、小生境Pareto等理论方法设计了三种多目标遗传算法(MGA)。根据集成学习理论,将若干多目标遗传算法集成,构建集成多目标遗... 根据效率优先原则、稳定性原则建立适合同端式出/入库立体仓库的多目标货位分配模型。基于向量评估、非支配排序、小生境Pareto等理论方法设计了三种多目标遗传算法(MGA)。根据集成学习理论,将若干多目标遗传算法集成,构建集成多目标遗传算法(EMGA),使优化算法适应搜索过程的任意阶段。以某铝厂实际工况进行仿真验证,结果表明,集成多目标遗传算法受问题规模影响小,收敛速度快,较单独其他多目标遗传算法性能更优越,是适用于立体仓库调度研究的高效算法。 展开更多
关键词 立体仓库 集成多目标遗传算法 货位分配 货位优化
下载PDF
INTEGRATED OPERATOR GENETIC ALGORITHM FOR SOLVING MULTI-OBJECTIVE FLEXIBLE JOB-SHOP SCHEDULING
5
作者 袁坤 朱剑英 +1 位作者 鞠全勇 王有远 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2006年第4期278-282,共5页
In the flexible job-shop scheduling problem (FJSP), each operation has to be assigned to a machine from a set of capable machines before alocating the assigned operations on all machines. To solve the multi-objectiv... In the flexible job-shop scheduling problem (FJSP), each operation has to be assigned to a machine from a set of capable machines before alocating the assigned operations on all machines. To solve the multi-objective FJSP, the Grantt graph oriented string representation (GOSR) and the basic manipulation of the genetic algorithm operator are presented. An integrated operator genetic algorithm (IOGA) and its process are described. Comparison between computational results and the latest research shows that the proposed algorithm is effective in reducing the total workload of all machines, the makespan and the critical machine workload. 展开更多
关键词 flexible job-shop integrated operator genetic algorithm multi-objective optimization job-shop scheduling
下载PDF
Rotation forest based on multimodal genetic algorithm 被引量:2
6
作者 XU Zhe NI Wei-chen JI Yue-hui 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第6期1747-1764,共18页
In machine learning,randomness is a crucial factor in the success of ensemble learning,and it can be injected into tree-based ensembles by rotating the feature space.However,it is a common practice to rotate the featu... In machine learning,randomness is a crucial factor in the success of ensemble learning,and it can be injected into tree-based ensembles by rotating the feature space.However,it is a common practice to rotate the feature space randomly.Thus,a large number of trees are required to ensure the performance of the ensemble model.This random rotation method is theoretically feasible,but it requires massive computing resources,potentially restricting its applications.A multimodal genetic algorithm based rotation forest(MGARF)algorithm is proposed in this paper to solve this problem.It is a tree-based ensemble learning algorithm for classification,taking advantage of the characteristic of trees to inject randomness by feature rotation.However,this algorithm attempts to select a subset of more diverse and accurate base learners using the multimodal optimization method.The classification accuracy of the proposed MGARF algorithm was evaluated by comparing it with the original random forest and random rotation ensemble methods on 23 UCI classification datasets.Experimental results show that the MGARF method outperforms the other methods,and the number of base learners in MGARF models is much fewer. 展开更多
关键词 ensemble learning decision tree multimodal optimization genetic algorithm
下载PDF
高强混凝土强度预测人工智能方法及应用 被引量:7
7
作者 俞桂良 《混凝土》 CAS CSCD 北大核心 2010年第10期41-43,共3页
高强混凝土的强度预测是一个动态性可变复杂问题,受各种因素的影响。采用多种智能方法,建立了高强混凝土的强度预测的遗传算法与神经网络的集成模型。并将该模型计算结果与实测混凝土28 d抗压强度,RBF径向基函数神经网络计算的强度,非... 高强混凝土的强度预测是一个动态性可变复杂问题,受各种因素的影响。采用多种智能方法,建立了高强混凝土的强度预测的遗传算法与神经网络的集成模型。并将该模型计算结果与实测混凝土28 d抗压强度,RBF径向基函数神经网络计算的强度,非线性回归模型计算的强度进行比较。研究表明:预测结果与实测结果吻合较好,较线性回归和神经网络预测精度高,为高强混凝土的强度预测提供了一条新方法。 展开更多
关键词 高强混凝土 遗传算法与神经网络的集成模型 强度预测
下载PDF
Waste Minimization Through Process Integration and Multi-objective Optimization 被引量:4
8
作者 高瑛 石磊 姚平经 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2001年第3期267-272,共6页
By avoiding or reducing the production of waste, waste minimization is an effective approach to solve the pollution problem in chemical industry. Process integration supported by multi-objective optimization provides ... By avoiding or reducing the production of waste, waste minimization is an effective approach to solve the pollution problem in chemical industry. Process integration supported by multi-objective optimization provides a framework for process design or process retrofit by simultaneously optimizing on the aspects of environment and economics. Multi-objective genetic algorithm is applied in this area as the solution approach for the multi-objective optimization problem. 展开更多
关键词 waste minimization process integration multi-objective optimization multi-objective genetic algo- rithm
下载PDF
The Integration of Cooperation Model and Genetic Algorithm
9
作者 ZHENG Zhaobao 《Geo-Spatial Information Science》 2002年第1期1-6,共6页
In the photogrammetry,some researchers have applied genetic algorithms in aerial image texture classification and reducing hyper_spectrum remote sensing data.Genetic algorithm can rapidly find the solutions which are ... In the photogrammetry,some researchers have applied genetic algorithms in aerial image texture classification and reducing hyper_spectrum remote sensing data.Genetic algorithm can rapidly find the solutions which are close to the optimal solution.But it is not easy to find the optimal solution.In order to solve the problem,a cooperative evolution idea integrating genetic algorithm and ant colony algorithm is presented in this paper.On the basis of the advantages of ant colony algorithm,this paper proposes the method integrating genetic algorithms and ant colony algorithm to overcome the drawback of genetic algorithms.Moreover,the paper takes designing texture classification masks of aerial images as an example to illustrate the integration theory and procedures. 展开更多
关键词 cooperation model ant colony algorithm recognizing INTEGRATION
下载PDF
Enterprise-level business component identification in business architecture integration 被引量:1
10
作者 Jiong FU Xue-shan LUO +1 位作者 Ai-min LUO Jun-xian LIU 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2017年第9期1320-1335,共16页
The component-based business architecture integration of military information systems is a popu- lar research topic in the field of military operational research. Identifying enterprise-level business components is an... The component-based business architecture integration of military information systems is a popu- lar research topic in the field of military operational research. Identifying enterprise-level business components is an important issue in business architecture integration. Currently used methodologies for business component identification tend to focus on software-level business components, and ignore such enterprise concerns in business architectures as organizations and resources. Moreover, approaches to enterprise-level business component identi- fication have proven laborious. In this study, we propose a novel approach to enterprise-level business component identification by considering overall cohesion, coupling, granularity, maintainability, and reusability. We first define and formulate enterprise-level business components based on the component business model and the Department of Defense Architecture Framework (DoDAF) models. To quantify the indices of business components, we formulate a create, read, update, and delete (CRUD) matrix and use six metrics as criteria. We then formulate business com- ponent identification as a multi:objective optimization problem and solve it by a novel meta-heuristic optimization algorithm called the 'simulated annealing hybrid genetic algorithm (SHGA)'. Case studies showed that our approach is more practical and efficient for enterprise-level business component identification than prevalent approaches. 展开更多
关键词 Business architecture integration Business component Component identification Create read update and delete (CRUD) matrix HEURISTIC
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部