期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于Boosting的集成k-NN软件缺陷预测方法 被引量:7
1
作者 何亮 宋擒豹 沈钧毅 《模式识别与人工智能》 EI CSCD 北大核心 2012年第5期792-802,共11页
软件缺陷预测是改善软件开发质量,提高测试效率的重要途径.文中提出一种基于软件度量元的集成k-NN软件缺陷预测方法.首先,该方法在不同的Bootstrap抽样数据集上迭代训练生成一个基本k-NN预测器集合.然后,这些基本预测器分别对软件模块... 软件缺陷预测是改善软件开发质量,提高测试效率的重要途径.文中提出一种基于软件度量元的集成k-NN软件缺陷预测方法.首先,该方法在不同的Bootstrap抽样数据集上迭代训练生成一个基本k-NN预测器集合.然后,这些基本预测器分别对软件模块进行独立预测,各基本预测值将被融合生成最终的预测结果.为判别新的软件模块是否为缺陷模块,设计分类阈值的自适应学习方法.集成预测结果大于该阈值的模块将被识别为缺陷模块,反之则为正常模块.NASAMDP及PROMISEAR标准软件缺陷数据集上的实验结果表明集成k-NN缺陷预测的性能较之广泛采用的对比缺陷预测方法有较明显的提高,同时也证明软件度量元在缺陷预测中的有效性. 展开更多
关键词 软件缺陷预测 k-近邻(k-nn) 软件度量元 集成学习
原文传递
基于Boosting的代价敏感软件缺陷预测方法 被引量:6
2
作者 杨杰 燕雪峰 张德平 《计算机科学》 CSCD 北大核心 2017年第8期176-180,206,共6页
Boosting重抽样是常用的扩充小样本数据集的方法,首先针对抽样过程中存在的维数灾难现象,提出随机属性子集选择方法以进行降维处理;进而针对软件缺陷预测对于漏报与误报的惩罚因子不同的特点,在属性选择过程中添加代价敏感算法。以多个... Boosting重抽样是常用的扩充小样本数据集的方法,首先针对抽样过程中存在的维数灾难现象,提出随机属性子集选择方法以进行降维处理;进而针对软件缺陷预测对于漏报与误报的惩罚因子不同的特点,在属性选择过程中添加代价敏感算法。以多个基本k-NN预测器为弱学习器,以代价最小为属性删除原则,得到当前抽样集的k值与属性子集的预测器集合,采用代价敏感的权重更新机制对抽样过程中的不同数据实例赋予相应权值,由所有预测器集合构成自适应的集成k-NN强学习器并建立软件缺陷预测模型。基于NASA数据集的实验结果表明,在小样本情况下,基于Boosting的代价敏感软件缺陷预测方法预测的漏报率有较大程度降低,误报率有一定程度增加,整体性能优于原来的Boosting集成预测方法。 展开更多
关键词 软件缺陷预测 BOOSTING 代价敏感 随机属性选择 集成k-nn
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部