This work presents an integrated pressure-tracking controller for a novel electro-hydraulic brake(EHB) system considering friction and hydraulic disturbances. To this end, a mathematical model of an EHB system, consis...This work presents an integrated pressure-tracking controller for a novel electro-hydraulic brake(EHB) system considering friction and hydraulic disturbances. To this end, a mathematical model of an EHB system, consisting of actuator and hydraulic sub-systems, is derived for describing the fundamental dynamics of the system and designing the controller. Due to sensor inaccuracy and measurement noise, a Kalman filter is constructed to estimate push rod stroke for generating desired master cylinder pressure. To improve pressure-tracking accuracy, a linear friction model is generated by linearizing the nonlinear Tustin friction model, and the unmodeled friction disturbances are assumed unknown but bounded. A sliding mode controller is designed for compensating friction disturbances, and the stability of the controller is investigated using the Lyapunov method. The performance of the proposed integrated controller is evaluated with a hardware-in-the-loop(HIL) test platform equipped with the EHB prototype. The test results demonstrate that the EHB system with the proposed integrated controller not only achieves good pressure-tracking performance, but also maintains robustness to friction disturbances.展开更多
This paper collects and synthesizes the technical requirements, implementation, and validation methods for quasi-steady agent-based simulations of interconnectionscale models with particular attention to the integrati...This paper collects and synthesizes the technical requirements, implementation, and validation methods for quasi-steady agent-based simulations of interconnectionscale models with particular attention to the integration of renewable generation and controllable loads. Approaches for modeling aggregated controllable loads are presented and placed in the same control and economic modeling framework as generation resources for interconnection planning studies. Model performance is examined with system parameters that are typical for an interconnection approximately the size of the Western Electricity Coordinating Council(WECC) and a control area about 1/100 the size of the system. These results are used to demonstrate and validate the methods presented.展开更多
A component-based model integration framework for computer numerical control system design and development is presented.The model integrates modeling,simulation,verification and implementation in a uniform environment...A component-based model integration framework for computer numerical control system design and development is presented.The model integrates modeling,simulation,verification and implementation in a uniform environment.The computer numerical control(CNC) modeling language with well defined syntax and unambiguous semantics is developed.Using the proposed CNC model integration method,a three axis milling system model is developed in the case study.The approach is an attempt to create an infrastructure to support the CNC system design in an efficient way,while at the same time guarantees the function and performance requirements with advanced capability of the system such as modularity,flexibility,reusability,etc.展开更多
基金Projects(51405008,51175015)supported by the National Natural Science Foundation of ChinaProject(2012AA110904)supported by the National High Technology Research and Development Program of China
文摘This work presents an integrated pressure-tracking controller for a novel electro-hydraulic brake(EHB) system considering friction and hydraulic disturbances. To this end, a mathematical model of an EHB system, consisting of actuator and hydraulic sub-systems, is derived for describing the fundamental dynamics of the system and designing the controller. Due to sensor inaccuracy and measurement noise, a Kalman filter is constructed to estimate push rod stroke for generating desired master cylinder pressure. To improve pressure-tracking accuracy, a linear friction model is generated by linearizing the nonlinear Tustin friction model, and the unmodeled friction disturbances are assumed unknown but bounded. A sliding mode controller is designed for compensating friction disturbances, and the stability of the controller is investigated using the Lyapunov method. The performance of the proposed integrated controller is evaluated with a hardware-in-the-loop(HIL) test platform equipped with the EHB prototype. The test results demonstrate that the EHB system with the proposed integrated controller not only achieves good pressure-tracking performance, but also maintains robustness to friction disturbances.
文摘This paper collects and synthesizes the technical requirements, implementation, and validation methods for quasi-steady agent-based simulations of interconnectionscale models with particular attention to the integration of renewable generation and controllable loads. Approaches for modeling aggregated controllable loads are presented and placed in the same control and economic modeling framework as generation resources for interconnection planning studies. Model performance is examined with system parameters that are typical for an interconnection approximately the size of the Western Electricity Coordinating Council(WECC) and a control area about 1/100 the size of the system. These results are used to demonstrate and validate the methods presented.
基金the National Natural Science Foundation of China (Nos. 50575075 and 50875090)
文摘A component-based model integration framework for computer numerical control system design and development is presented.The model integrates modeling,simulation,verification and implementation in a uniform environment.The computer numerical control(CNC) modeling language with well defined syntax and unambiguous semantics is developed.Using the proposed CNC model integration method,a three axis milling system model is developed in the case study.The approach is an attempt to create an infrastructure to support the CNC system design in an efficient way,while at the same time guarantees the function and performance requirements with advanced capability of the system such as modularity,flexibility,reusability,etc.