Total Cloud Cover (TCC) over China deter- mined from four climate datasets including the Interna- tional Satellite Cloud Climatology Project (ISCCP), the 40-year Re-Analysis Project of the European Centre for Medi...Total Cloud Cover (TCC) over China deter- mined from four climate datasets including the Interna- tional Satellite Cloud Climatology Project (ISCCP), the 40-year Re-Analysis Project of the European Centre for Medium-Range Weather Forecasts (ERA-40), Climate Research Unit Time Series 3.0 (CRU3), and ground sta- tion datasets are used to show spatial and temporal varia- tion of TCC and their differences. It is demonstrated that the four datasets show similar spatial pattern and seasonal variation. The maximum value is derived from ISCCE TCC value in North China derived from ERA-40 is 50% larger than that from the station dataset; however, the value is 50% less than that in South China. The annual TCC of ISCCP, ERA-40, and ground station datasets shows a decreasing trend during 1984-2002; however, an increasing trend is derived from CRU3. The results of this study imply remarkable differences of TCC derived from surface and satellite observations as well as model simu- lations. The potential effects of these differences on cloud climatology and associated climatic issues should be carefully considered.展开更多
基金supported by the "Strategic Priority Research Program" of the Chinese Academy of Sciences(XDA05100300)the National Basic Research Program of China(2013CB955801)the National Natural Science Foundation of China(41175030)
文摘Total Cloud Cover (TCC) over China deter- mined from four climate datasets including the Interna- tional Satellite Cloud Climatology Project (ISCCP), the 40-year Re-Analysis Project of the European Centre for Medium-Range Weather Forecasts (ERA-40), Climate Research Unit Time Series 3.0 (CRU3), and ground sta- tion datasets are used to show spatial and temporal varia- tion of TCC and their differences. It is demonstrated that the four datasets show similar spatial pattern and seasonal variation. The maximum value is derived from ISCCE TCC value in North China derived from ERA-40 is 50% larger than that from the station dataset; however, the value is 50% less than that in South China. The annual TCC of ISCCP, ERA-40, and ground station datasets shows a decreasing trend during 1984-2002; however, an increasing trend is derived from CRU3. The results of this study imply remarkable differences of TCC derived from surface and satellite observations as well as model simu- lations. The potential effects of these differences on cloud climatology and associated climatic issues should be carefully considered.