Solid phase microextraction (SPME) is a solvent-flee method of sample collection. SPME is an appealing method for sample collection because it is designed for the sampling of trace level analytes with short sampling...Solid phase microextraction (SPME) is a solvent-flee method of sample collection. SPME is an appealing method for sample collection because it is designed for the sampling of trace level analytes with short sampling times in a variety of environments. Additionally, SPME can be used to directly deliver a sample to a gas chromatograph (GC) for analysis by means of thermal desorption. In this paper, the performance of SPME under dynamic conditions was investigated. Additionally, the competence of SPME sampling for the simultaneous analysis of multiple trace analytes was also evaluated. This work is discussed in the context of underground mine ventilation surveys but is applicable to any industry in which ventilation circuits must be evaluated. The results of this paper showed that the performance of the 100 ~m PDMS SPME fiber was both precise and rapid under dynamic conditions. This SPME fiber was also able to simultaneously collect sulfur hexafluoride (SF6) and perfluoromethylcyclohexane (PMCH) with adequate sensitivity.展开更多
A large number of debris flows occurred simultaneously at around 8:30 to 8:50 a.m.on July 27,2011,at the center of Seoul,Korea.This area is located in the southern part of Seoul and is a densely populated district.As ...A large number of debris flows occurred simultaneously at around 8:30 to 8:50 a.m.on July 27,2011,at the center of Seoul,Korea.This area is located in the southern part of Seoul and is a densely populated district.As a result of the debris flow event,16 people were killed,30 houses were buried,and 116 houses were damaged around Umyeon Mountain,a relatively small mountain with a height of 312.6 m.Since the debris flow event,field investigations on the initiation and transportation zones of debris flows have been carried out.Rainfall data were collected from the automatic weather stations(AWSs) which are operated by the Korea Meteorological Administration(KMA).Video files recorded by residents were also acquired and used to analyze the flow characteristics of the debris flow.Field investigation shows that about 40 debris flows occurred around Umyeon Mountain and most of the debris flows were initiated by small slope failures.The effects of the precipitation that triggered the debris flows were analyzed as well.A landslide hazard map which considers slope gradient and aspect,strength of soil,hazard record,rainfall conditions,and vegetation,was constructed and compared with the initiation zones of debris flows.展开更多
This paper analyzed the development of different types of natural gas flow zones in China, and then di- vided all provinces into four flow types: non-flow zones, output centers, input centers and exchanging centers. ...This paper analyzed the development of different types of natural gas flow zones in China, and then di- vided all provinces into four flow types: non-flow zones, output centers, input centers and exchanging centers. Next, we analyzed the concentration and diffusion characteristics, current spatial pattern and evolution of source and terminal regions of natural gas resource flows. The numbers of non-flow zones, output centers, input centers and exchanging centers all stabilized during the Eleventh Five-Year Plan period. The number of output centers is small but the quantity of flow is large. The number of input centers is large and they are widely distributed. Generally speaking, it presents a significant characteristic of centralized output and dispersed input in geographic space. The current situation for China's natural gas output source has random distribution characteristics, but the terminal re- gions of natural gas flow have strong positive spatial correlation, presenting a significant spatial agglomeration pattern. Shandong, Jiangsu, Zhejiang and Shanghai have a high-high agglomeration mode, but Yunnan, Sichuan, Tibet, Qinghai and Gansu have a low-low agglomeration output zones had three different stages: relatively stable mode. Spatial pattern changes in China' s natural gas from 2001-2003; moved northwestward, expanded in space, and widely dispersed during 2004-2006; and transferred to the east, spatially contracted and significantly concentrated during 2007-2011. Spatial pattern changes in China's natural gas input zones have two stages: ex- panded in east-west direction while contracted in north-south direction during 2001-2005; and relatively stable in spatial structure with intensification from 2006-2011.展开更多
Using data on wind stress, significant height of combined wind waves and swell, potential temperature, salinity and seawater velocity, as well as objectively-analyzed in situ temperature and salinity, we established a...Using data on wind stress, significant height of combined wind waves and swell, potential temperature, salinity and seawater velocity, as well as objectively-analyzed in situ temperature and salinity, we established a global ocean dataset of calculated wind- and tide-induced vertical turbulent mixing coefficients. We then examined energy conservation of ocean vertical mixing from the point of view of ocean wind energy inputs, gravitational potential energy change due to mixing(with and without artificially limiting themixing coefficient), and K-theory vertical turbulent parameterization schemes regardless of energy inputs. Our research showed that calculating the mixing coefficient with average data and artificial limiting the mixing coefficient can cause a remarkable lack of energy conservation, with energy losses of up to 90% and changes in the energy oscillation period. The data also show that wind can introduce a huge amount of energy into the upper layers of the Southern Ocean, and that tidesdo so in regions around underwater mountains. We argue that it is necessary to take wind and tidal energy inputs into account forlong-term ocean climate numerical simulations. We believe that using this ocean vertical turbulent mixing coefficient climatic dataset is a fast and efficient method to maintain the ocean energy balance in ocean modeling research.展开更多
In this letter,we present a lattice Boltzmann simulation for complex flow in a solar wall system which includes porous media flow and heat transfer,specifically for solar energy utilization through an unglazed transpi...In this letter,we present a lattice Boltzmann simulation for complex flow in a solar wall system which includes porous media flow and heat transfer,specifically for solar energy utilization through an unglazed transpired solar air collector(UTC).Besides the lattice Boltzmann equation(LBE) for time evolution of particle distribution function for fluid field,we introduce an analogy,LBE for time evolution of distribution function for temperature.Both temperature fields of fluid(air) and solid(porous media) are modeled.We study the effects of fan velocity,solar radiation intensity,porosity,etc.on the thermal performance of the UTC.In general,our simulation results are in good agreement with what in literature.With the current system setting,both fan velocity and solar radiation intensity have significant effect on the thermal performance of the UTC.However,it is shown that the porosity has negligible effect on the heat collector indicating the current system setting might not be realistic.Further examinations of thermal performance in different UTC systems are ongoing.The results are expected to present in near future.展开更多
基金Contract No.200-2009-31933,awarded by the National Institute for Occupational Safety and Health(NIOSH)
文摘Solid phase microextraction (SPME) is a solvent-flee method of sample collection. SPME is an appealing method for sample collection because it is designed for the sampling of trace level analytes with short sampling times in a variety of environments. Additionally, SPME can be used to directly deliver a sample to a gas chromatograph (GC) for analysis by means of thermal desorption. In this paper, the performance of SPME under dynamic conditions was investigated. Additionally, the competence of SPME sampling for the simultaneous analysis of multiple trace analytes was also evaluated. This work is discussed in the context of underground mine ventilation surveys but is applicable to any industry in which ventilation circuits must be evaluated. The results of this paper showed that the performance of the 100 ~m PDMS SPME fiber was both precise and rapid under dynamic conditions. This SPME fiber was also able to simultaneously collect sulfur hexafluoride (SF6) and perfluoromethylcyclohexane (PMCH) with adequate sensitivity.
基金supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education,Science and Technology (2012014940)supported by a grant(Code#’08 RTIP B01-01) from the Regional Technology Innovation Program (RTIP)funded by the Ministry of Land Transport and Maritime Affairs of the Korean government
文摘A large number of debris flows occurred simultaneously at around 8:30 to 8:50 a.m.on July 27,2011,at the center of Seoul,Korea.This area is located in the southern part of Seoul and is a densely populated district.As a result of the debris flow event,16 people were killed,30 houses were buried,and 116 houses were damaged around Umyeon Mountain,a relatively small mountain with a height of 312.6 m.Since the debris flow event,field investigations on the initiation and transportation zones of debris flows have been carried out.Rainfall data were collected from the automatic weather stations(AWSs) which are operated by the Korea Meteorological Administration(KMA).Video files recorded by residents were also acquired and used to analyze the flow characteristics of the debris flow.Field investigation shows that about 40 debris flows occurred around Umyeon Mountain and most of the debris flows were initiated by small slope failures.The effects of the precipitation that triggered the debris flows were analyzed as well.A landslide hazard map which considers slope gradient and aspect,strength of soil,hazard record,rainfall conditions,and vegetation,was constructed and compared with the initiation zones of debris flows.
基金National Natural Science Foundation of China(41371518)
文摘This paper analyzed the development of different types of natural gas flow zones in China, and then di- vided all provinces into four flow types: non-flow zones, output centers, input centers and exchanging centers. Next, we analyzed the concentration and diffusion characteristics, current spatial pattern and evolution of source and terminal regions of natural gas resource flows. The numbers of non-flow zones, output centers, input centers and exchanging centers all stabilized during the Eleventh Five-Year Plan period. The number of output centers is small but the quantity of flow is large. The number of input centers is large and they are widely distributed. Generally speaking, it presents a significant characteristic of centralized output and dispersed input in geographic space. The current situation for China's natural gas output source has random distribution characteristics, but the terminal re- gions of natural gas flow have strong positive spatial correlation, presenting a significant spatial agglomeration pattern. Shandong, Jiangsu, Zhejiang and Shanghai have a high-high agglomeration mode, but Yunnan, Sichuan, Tibet, Qinghai and Gansu have a low-low agglomeration output zones had three different stages: relatively stable mode. Spatial pattern changes in China' s natural gas from 2001-2003; moved northwestward, expanded in space, and widely dispersed during 2004-2006; and transferred to the east, spatially contracted and significantly concentrated during 2007-2011. Spatial pattern changes in China's natural gas input zones have two stages: ex- panded in east-west direction while contracted in north-south direction during 2001-2005; and relatively stable in spatial structure with intensification from 2006-2011.
基金supported by National Natural Science Foundation of China(Grant No.41175058)
文摘Using data on wind stress, significant height of combined wind waves and swell, potential temperature, salinity and seawater velocity, as well as objectively-analyzed in situ temperature and salinity, we established a global ocean dataset of calculated wind- and tide-induced vertical turbulent mixing coefficients. We then examined energy conservation of ocean vertical mixing from the point of view of ocean wind energy inputs, gravitational potential energy change due to mixing(with and without artificially limiting themixing coefficient), and K-theory vertical turbulent parameterization schemes regardless of energy inputs. Our research showed that calculating the mixing coefficient with average data and artificial limiting the mixing coefficient can cause a remarkable lack of energy conservation, with energy losses of up to 90% and changes in the energy oscillation period. The data also show that wind can introduce a huge amount of energy into the upper layers of the Southern Ocean, and that tidesdo so in regions around underwater mountains. We argue that it is necessary to take wind and tidal energy inputs into account forlong-term ocean climate numerical simulations. We believe that using this ocean vertical turbulent mixing coefficient climatic dataset is a fast and efficient method to maintain the ocean energy balance in ocean modeling research.
基金Supported by the National Nature Science Foundation of China under Grant Nos. 10932010,11072220,11072229,U1262109,51176172,and 10972208
文摘In this letter,we present a lattice Boltzmann simulation for complex flow in a solar wall system which includes porous media flow and heat transfer,specifically for solar energy utilization through an unglazed transpired solar air collector(UTC).Besides the lattice Boltzmann equation(LBE) for time evolution of particle distribution function for fluid field,we introduce an analogy,LBE for time evolution of distribution function for temperature.Both temperature fields of fluid(air) and solid(porous media) are modeled.We study the effects of fan velocity,solar radiation intensity,porosity,etc.on the thermal performance of the UTC.In general,our simulation results are in good agreement with what in literature.With the current system setting,both fan velocity and solar radiation intensity have significant effect on the thermal performance of the UTC.However,it is shown that the porosity has negligible effect on the heat collector indicating the current system setting might not be realistic.Further examinations of thermal performance in different UTC systems are ongoing.The results are expected to present in near future.