Physical properties of sea water,such as salinity,temperature,density and acoustic velocity,could be demarcated through degradation of energy caused by water absorption,attenuation and other factors.To overcome the ch...Physical properties of sea water,such as salinity,temperature,density and acoustic velocity,could be demarcated through degradation of energy caused by water absorption,attenuation and other factors.To overcome the challenging difficulties in the quick monitoring of these physical properties,we have explored the high resolution marine seismic survey to instantly characterize them.Based on the unique wavefield propagating in the sea water,we have developed a new approach to suppress the noise caused by the shallow sea water disturbance and obtain useful information for estimating the sea water structure.This approach improves seismic data with high signal-to-noise ratio and resolution.The seismic reflection imaging can map the sea water structure acoustically.Combined with the knowledge of local water body structure profile over years,the instant model for predicting the sea water properties could be built using the seismic data acquired from the specially designed high precision marine seismic acquisition.This model can also be updated with instant observation and the complete data processing system.The present study has the potential value to many applications,such as 3D sea water monitoring,engineering evaluation,geological disaster assessment and environmental assessment.展开更多
Limited by serious heterogeneity both horizontally and vertically, water driving of low-permeability layers in Qiaokou oilfield appears to be very difficult. As the classⅠ layer reaches the stage of high water-conten...Limited by serious heterogeneity both horizontally and vertically, water driving of low-permeability layers in Qiaokou oilfield appears to be very difficult. As the classⅠ layer reaches the stage of high water-content too early, the level of exploitation became worse with low-recovery. Regarding the serious heterogeneity and low recovery in layers class Ⅱand Ⅲ, composite fracturing technology suitable for this kind of reservoir was applied. Its basement was a lab study of indoor water driving efficiency and fracturing experiment. Perfect result has achieved by using the technology.展开更多
Knowledge about the influence of soil layers on evaporation is essential for the optimization of infield rainwater harvesting (IRWH) in the semi-arid areas of the Free State province of South Africa. Among the soils...Knowledge about the influence of soil layers on evaporation is essential for the optimization of infield rainwater harvesting (IRWH) in the semi-arid areas of the Free State province of South Africa. Among the soils earmarked for 1RWH development include the Tukulu, Sepane and Swartland soil types that have contrasting soil layers. These soils have to capture and store rainwater within the soil profile layers away from the evaporation zone. To determine how the three soils release and deliver soil water at the evaporating site, a 21-day evaporation experiment was conducted on pre-drained monoliths. Instantaneous soil water content (SWC) from in-situ and soil water characteristic curve (SWCC) from laboratory was measured. Separate soil samples of 15 mm thickness were also evaporated under the same conditions to establish the extent of drying and hydraulic gradient at the soil surface. The Darcian evaporative flux and unsaturated hydraulic conductivity (K-coefficient) were also determined. At the surface suctions of magnitude greater than 1,500 kPa were observed from all monoliths. Total contributions to evaporation from the Tukulu, Sepane and Swartland were 43, 51 and 70 mm, respectively. The low contributions were explained by the presence of the prismacutanic C-horizon in the Tukulu and Sepane at respective depths of 600 and 700 mm. This layer was associated with the steepest suction gradient that restrained further upward fluxes by subsequent lowering for the K-coefficient with more than two orders of magnitudes within a narrow range of SWC. However, the presence of the pedocutanic B-horizon at depths of 300 mm undermined this restrictive function through the appreciable capillary activity demonstrated by clays at near evaporating surfaces. The shallowness and deficiency in structure of the Swartland was consistent with the high contribution to evaporation that gave this soil a dry soil water regime. It was therefore concluded that the Tukulu offered soil profile layers that could reasonably satisfy the soil water conservation requirements for IRWH.展开更多
Heat and mass transfer analysis of an incompressible, laminar boundary layer over solar flat plate collector evapora- tion systems for tannery effluent (soak liquor) is investigated. The governing equations are solved...Heat and mass transfer analysis of an incompressible, laminar boundary layer over solar flat plate collector evapora- tion systems for tannery effluent (soak liquor) is investigated. The governing equations are solved for various liquid to air velocity ratios. Profiles of velocity, temperature and concentration as well as their gradients are presented. The heat transfer and mass transfer coefficients thus obtained are used to evaluate mass of water evaporated for an inclined fibre-reinforced plastic (FRP) solar flat plate collector (FPC) with and without cover. Comparison of these results with the experimental performance shows encouraging trend of good agreement between them.展开更多
Several conflicting objectives are considered in decision-making. MCDA (multi-criteria decision analysis) methods are developed to facilitate better decision making by decision-makers. Water supply problems are comp...Several conflicting objectives are considered in decision-making. MCDA (multi-criteria decision analysis) methods are developed to facilitate better decision making by decision-makers. Water supply problems are complex problems with multiple decision making and criteria. Hence, the use of multi-criteria decision analysis is very appropriate for solving these problems. Multi-criteria decision analysis can be divided into three main groups: value measurement models, goals, aspiration and reference level models and outranking models. The methods listed have been applied to water supply problems, especially in the evaluation of alternative water supply strategies. Each method has its advantages and limitations. A good alternative for concluding a better-suited method for water supply problems is to apply more than one method, either in combination to make use of the strengths of both methods, or in parallel to obtain a broader decision basis for the decision maker. Previous studies of MCDA in water supply planning have usually considered water supply networks with only one water service delivery. Advanced water supply sources with multiple water service delivery systems have been neglected. This is an on-going study in which analytical hierarchical multi-criteria decision analysis methods are proposed for solving water supply problems and a framework for improved rainwater harvesting systems will be developed.展开更多
基金the Natural Science Foundation of China(41176077)Subject of 973(2009CB219505)+2 种基金Natural Science Foundation of Shandong(ZR2010DM012)Basic Research Special Foundation of the Third Institute of Oceanography affiliated to the State Oceanic Administration(TIOSOA,2009004)the Science Research Project for the South China Sea of Ocean University of China for their financial support to this work
文摘Physical properties of sea water,such as salinity,temperature,density and acoustic velocity,could be demarcated through degradation of energy caused by water absorption,attenuation and other factors.To overcome the challenging difficulties in the quick monitoring of these physical properties,we have explored the high resolution marine seismic survey to instantly characterize them.Based on the unique wavefield propagating in the sea water,we have developed a new approach to suppress the noise caused by the shallow sea water disturbance and obtain useful information for estimating the sea water structure.This approach improves seismic data with high signal-to-noise ratio and resolution.The seismic reflection imaging can map the sea water structure acoustically.Combined with the knowledge of local water body structure profile over years,the instant model for predicting the sea water properties could be built using the seismic data acquired from the specially designed high precision marine seismic acquisition.This model can also be updated with instant observation and the complete data processing system.The present study has the potential value to many applications,such as 3D sea water monitoring,engineering evaluation,geological disaster assessment and environmental assessment.
文摘Limited by serious heterogeneity both horizontally and vertically, water driving of low-permeability layers in Qiaokou oilfield appears to be very difficult. As the classⅠ layer reaches the stage of high water-content too early, the level of exploitation became worse with low-recovery. Regarding the serious heterogeneity and low recovery in layers class Ⅱand Ⅲ, composite fracturing technology suitable for this kind of reservoir was applied. Its basement was a lab study of indoor water driving efficiency and fracturing experiment. Perfect result has achieved by using the technology.
文摘Knowledge about the influence of soil layers on evaporation is essential for the optimization of infield rainwater harvesting (IRWH) in the semi-arid areas of the Free State province of South Africa. Among the soils earmarked for 1RWH development include the Tukulu, Sepane and Swartland soil types that have contrasting soil layers. These soils have to capture and store rainwater within the soil profile layers away from the evaporation zone. To determine how the three soils release and deliver soil water at the evaporating site, a 21-day evaporation experiment was conducted on pre-drained monoliths. Instantaneous soil water content (SWC) from in-situ and soil water characteristic curve (SWCC) from laboratory was measured. Separate soil samples of 15 mm thickness were also evaporated under the same conditions to establish the extent of drying and hydraulic gradient at the soil surface. The Darcian evaporative flux and unsaturated hydraulic conductivity (K-coefficient) were also determined. At the surface suctions of magnitude greater than 1,500 kPa were observed from all monoliths. Total contributions to evaporation from the Tukulu, Sepane and Swartland were 43, 51 and 70 mm, respectively. The low contributions were explained by the presence of the prismacutanic C-horizon in the Tukulu and Sepane at respective depths of 600 and 700 mm. This layer was associated with the steepest suction gradient that restrained further upward fluxes by subsequent lowering for the K-coefficient with more than two orders of magnitudes within a narrow range of SWC. However, the presence of the pedocutanic B-horizon at depths of 300 mm undermined this restrictive function through the appreciable capillary activity demonstrated by clays at near evaporating surfaces. The shallowness and deficiency in structure of the Swartland was consistent with the high contribution to evaporation that gave this soil a dry soil water regime. It was therefore concluded that the Tukulu offered soil profile layers that could reasonably satisfy the soil water conservation requirements for IRWH.
文摘Heat and mass transfer analysis of an incompressible, laminar boundary layer over solar flat plate collector evapora- tion systems for tannery effluent (soak liquor) is investigated. The governing equations are solved for various liquid to air velocity ratios. Profiles of velocity, temperature and concentration as well as their gradients are presented. The heat transfer and mass transfer coefficients thus obtained are used to evaluate mass of water evaporated for an inclined fibre-reinforced plastic (FRP) solar flat plate collector (FPC) with and without cover. Comparison of these results with the experimental performance shows encouraging trend of good agreement between them.
文摘Several conflicting objectives are considered in decision-making. MCDA (multi-criteria decision analysis) methods are developed to facilitate better decision making by decision-makers. Water supply problems are complex problems with multiple decision making and criteria. Hence, the use of multi-criteria decision analysis is very appropriate for solving these problems. Multi-criteria decision analysis can be divided into three main groups: value measurement models, goals, aspiration and reference level models and outranking models. The methods listed have been applied to water supply problems, especially in the evaluation of alternative water supply strategies. Each method has its advantages and limitations. A good alternative for concluding a better-suited method for water supply problems is to apply more than one method, either in combination to make use of the strengths of both methods, or in parallel to obtain a broader decision basis for the decision maker. Previous studies of MCDA in water supply planning have usually considered water supply networks with only one water service delivery. Advanced water supply sources with multiple water service delivery systems have been neglected. This is an on-going study in which analytical hierarchical multi-criteria decision analysis methods are proposed for solving water supply problems and a framework for improved rainwater harvesting systems will be developed.