This article deals with the design of energy efficient water utilization systems allowing operation split. Practical features such as operating flexibility and capital cost have made the number of sub operations an im...This article deals with the design of energy efficient water utilization systems allowing operation split. Practical features such as operating flexibility and capital cost have made the number of sub operations an important parameter of the problem. By treating the direct and indirect heat transfers separately, target freshwater and energy consumption as well as the operation split conditions are first obtained. Subsequently, a mixed integer non-linear programming (MINLP) model is established for the design of water network and the heat exchanger network (HEN). The proposed systematic approach is limited to a single contaminant. Example from literature is used to illustrate the applicability of the approach.展开更多
Mobile sink is the challenging task for wireless sensor networks(WSNs).In this paper we propose to design an efficient routing protocol for single mobile sink and multiple mobile sink for data gathering in WSN.In this...Mobile sink is the challenging task for wireless sensor networks(WSNs).In this paper we propose to design an efficient routing protocol for single mobile sink and multiple mobile sink for data gathering in WSN.In this process,a biased random walk method is used to determine the next position of the sink.Then,a rendezvous point selection with splitting tree technique is used to find the optimal data transmission path.If the sink moves within the range of the rendezvous point,it receives the gathered data and if moved out,it selects a relay node from its neighbours to relay packets from rendezvous point to the sink.Proposed algorithm reduces the signal overhead and improves the triangular routing problem.Here the sink acts as a vehicle and collect the data from the sensor.The results show that the proposed model effectively supports sink mobility with low overhead and delay when compared with Intelligent Agent-based Routing protocol(IAR) and also increases the reliability and delivery ratio when the number of sources increases.展开更多
The development of heterogeneous acid catalysts with higher activity than homogeneous acid catalysts is critical and still challenging.In this study,acidic poly(ionic liquid)s with swelling ability(SAPILs)were designe...The development of heterogeneous acid catalysts with higher activity than homogeneous acid catalysts is critical and still challenging.In this study,acidic poly(ionic liquid)s with swelling ability(SAPILs)were designed and synthesized via the free radical copolymerization of ionic liquid monomers,sodium p-styrenesulfonate,and crosslinkers,followed by acidification.The 31P nuclear magnetic resonance chemical shifts of adsorbed trimethylphosphine oxide indicated that the synthesized SAPILs presented moderate and single acid strength.The thermogravimetric analysis results in the temperature range of 300–345°C revealed that the synthesized SAPILs were more stable than the commercial resin Amberlite IR-120(H)(245°C).Cryogenic scanning electron microscopy testing demonstrated that SAPILs presented unique three-dimensional(3D)honeycomb structure in water,which was ascribed to the swelling-induced self-assembly of the molecules.Moreover,we used SAPILs with micron-sized honeycomb structure in water as catalysts for the hydrolysis of cyclohexyl acetate to cyclohexanol,and determined that their catalytic activity was much higher than that of homogeneous acid catalysts.The equilibrium concentrations of all reaction components inside and outside the synthesized SAPILs were quantitatively analyzed using a series of simulated reaction mixtures.Depending on the reaction mixture,the concentration of cyclohexyl acetate inside SAPIL-1 was 7.5–23.3 times higher than that outside of it,which suggested the high enrichment ability of SAPILs for cyclohexyl acetate.The excellent catalytic performance of SAPILs was attributed to their 3D honeycomb structure in water and high enrichment ability for cyclohexyl acetate,which opened up new avenues for designing highly efficient heterogeneous acid catalysts that could eventually replace conventional homogeneous acid catalysts.展开更多
This paper considers an underwater acoustic sensor network with one mobile surface node to collect data from multiple underwater nodes,where the mobile destination requests retransmission from each underwater node ind...This paper considers an underwater acoustic sensor network with one mobile surface node to collect data from multiple underwater nodes,where the mobile destination requests retransmission from each underwater node individually employing traditional automatic-repeat-request(ARQ) protocol.We propose a practical node cooperation(NC) protocol to enhance the collection efficiency,utilizing the fact that underwater nodes can overhear the transmission of others.To reduce the source level of underwater nodes,the underwater data collection area is divided into several sub-zones,and in each sub-zone,the mobile surface node adopting the NC protocol could switch adaptively between selective relay cooperation(SRC) and dynamic network coded cooperation(DNC) .The difference of SRC and DNC lies in whether or not the selected relay node combines the local data and the data overheard from undecoded node(s) to form network coded packets in the retransmission phase.The NC protocol could also be applied across the sub-zones due to the wiretap property.In addition,we investigate the effects of different mobile collection paths,collection area division and cooperative zone design for energy saving.The numerical results showthat the proposed NC protocol can effectively save energy compared with the traditional ARQ scheme.展开更多
基金Supported by the Major Project of National Natural Science Foundation of China (No.20409205) and National High Technology Research and Development Program of China (No.G20070040).
文摘This article deals with the design of energy efficient water utilization systems allowing operation split. Practical features such as operating flexibility and capital cost have made the number of sub operations an important parameter of the problem. By treating the direct and indirect heat transfers separately, target freshwater and energy consumption as well as the operation split conditions are first obtained. Subsequently, a mixed integer non-linear programming (MINLP) model is established for the design of water network and the heat exchanger network (HEN). The proposed systematic approach is limited to a single contaminant. Example from literature is used to illustrate the applicability of the approach.
文摘Mobile sink is the challenging task for wireless sensor networks(WSNs).In this paper we propose to design an efficient routing protocol for single mobile sink and multiple mobile sink for data gathering in WSN.In this process,a biased random walk method is used to determine the next position of the sink.Then,a rendezvous point selection with splitting tree technique is used to find the optimal data transmission path.If the sink moves within the range of the rendezvous point,it receives the gathered data and if moved out,it selects a relay node from its neighbours to relay packets from rendezvous point to the sink.Proposed algorithm reduces the signal overhead and improves the triangular routing problem.Here the sink acts as a vehicle and collect the data from the sensor.The results show that the proposed model effectively supports sink mobility with low overhead and delay when compared with Intelligent Agent-based Routing protocol(IAR) and also increases the reliability and delivery ratio when the number of sources increases.
文摘The development of heterogeneous acid catalysts with higher activity than homogeneous acid catalysts is critical and still challenging.In this study,acidic poly(ionic liquid)s with swelling ability(SAPILs)were designed and synthesized via the free radical copolymerization of ionic liquid monomers,sodium p-styrenesulfonate,and crosslinkers,followed by acidification.The 31P nuclear magnetic resonance chemical shifts of adsorbed trimethylphosphine oxide indicated that the synthesized SAPILs presented moderate and single acid strength.The thermogravimetric analysis results in the temperature range of 300–345°C revealed that the synthesized SAPILs were more stable than the commercial resin Amberlite IR-120(H)(245°C).Cryogenic scanning electron microscopy testing demonstrated that SAPILs presented unique three-dimensional(3D)honeycomb structure in water,which was ascribed to the swelling-induced self-assembly of the molecules.Moreover,we used SAPILs with micron-sized honeycomb structure in water as catalysts for the hydrolysis of cyclohexyl acetate to cyclohexanol,and determined that their catalytic activity was much higher than that of homogeneous acid catalysts.The equilibrium concentrations of all reaction components inside and outside the synthesized SAPILs were quantitatively analyzed using a series of simulated reaction mixtures.Depending on the reaction mixture,the concentration of cyclohexyl acetate inside SAPIL-1 was 7.5–23.3 times higher than that outside of it,which suggested the high enrichment ability of SAPILs for cyclohexyl acetate.The excellent catalytic performance of SAPILs was attributed to their 3D honeycomb structure in water and high enrichment ability for cyclohexyl acetate,which opened up new avenues for designing highly efficient heterogeneous acid catalysts that could eventually replace conventional homogeneous acid catalysts.
基金supported in part by National Key Research and Development Program of China under Grants No.2016YFC1400200 and 2016YFC1400204National Natural Science Foundation of China under Grants No.41476026,41676024 and 41376040Fundamental Research Funds for the Central Universities of China under Grant No.220720140506
文摘This paper considers an underwater acoustic sensor network with one mobile surface node to collect data from multiple underwater nodes,where the mobile destination requests retransmission from each underwater node individually employing traditional automatic-repeat-request(ARQ) protocol.We propose a practical node cooperation(NC) protocol to enhance the collection efficiency,utilizing the fact that underwater nodes can overhear the transmission of others.To reduce the source level of underwater nodes,the underwater data collection area is divided into several sub-zones,and in each sub-zone,the mobile surface node adopting the NC protocol could switch adaptively between selective relay cooperation(SRC) and dynamic network coded cooperation(DNC) .The difference of SRC and DNC lies in whether or not the selected relay node combines the local data and the data overheard from undecoded node(s) to form network coded packets in the retransmission phase.The NC protocol could also be applied across the sub-zones due to the wiretap property.In addition,we investigate the effects of different mobile collection paths,collection area division and cooperative zone design for energy saving.The numerical results showthat the proposed NC protocol can effectively save energy compared with the traditional ARQ scheme.