In order to improve the detection accuracy of Doppler asymmetric spatial heterodyne(DASH)interferometer in harsh temperatures,an opto-mechanical-thermal integration analysis is carried out.Firstly,the correlation betw...In order to improve the detection accuracy of Doppler asymmetric spatial heterodyne(DASH)interferometer in harsh temperatures,an opto-mechanical-thermal integration analysis is carried out.Firstly,the correlation between the interference phase and temperature is established according to the working principle and the phase algorithm of the interferometer.Secondly,the optical mechanical thermal analysis model and thermal deformation data acquisition model are designed.The deformation data of the interference module and the imaging optical system at different temperatures are given by temperature load simulation analysis,and the phase error caused by thermal deformation is obtained by fitting.Finally,based on the wind speed error caused by thermal deformation of each component,a reasonable temperature control scheme is proposed.The results show that the interference module occupies the main cause,the temperature must be controlled within(20±0.05)℃,and the temperature control should be carried out for the temperature sensitive parts,and the wind speed error caused by the part is 3.8 m/s.The thermal drift between the magnification of the imaging optical system and the thermal drift of the relative position between the imaging optical system and the detector should occupy the secondary cause,which should be controlled within(20±2)℃,and the wind speed error caused by the part is 3.05 m/s.In summary,the wind measurement error caused by interference module,imaging optical system,and the relative position between the imaging optical system and the detector can be controlled within 6.85 m/s.The analysis and temperature control schemes presented in this paper can provide theoretical basis for DASH interferometer engineering applications.展开更多
In this research paper, an attempt has been made to come across the effect of distance between double glazing on the efficiency of a solar thermal collector. Experiments were carded out on an active solar energy demon...In this research paper, an attempt has been made to come across the effect of distance between double glazing on the efficiency of a solar thermal collector. Experiments were carded out on an active solar energy demonstration system (ET 200). Commercial glass pane of 3 mm thick having the same dimensions as that of the apparatus was placed above the collector at a distance of 2 cm, 4 cm and 6 cm. Tests were done with and without the added glass. Experiments were performed for double glazing with two positions of the light meter. In one position, it was placed in the middle of the collector surface. While, in the other one, the light meter was placed in the middle of the added glass. To study the effect of double glazing on the performance of the solar collector ET 200, the correct position of the light meter was to place it exactly in the middle of the additional pane under the lamp. Double glazing does not enhance the performance of the solar collector because of the high resistance of the system glass air glass. The efficiency of double glazing solar collector decreases with the increasing the distance of the two separated glasses.展开更多
The control of heat exchange stations in district heating system is critical for the overall energy efficiency and can be very difficult due to high level of complexity. A conventional method is to control the equipme...The control of heat exchange stations in district heating system is critical for the overall energy efficiency and can be very difficult due to high level of complexity. A conventional method is to control the equipment such that the temperature of hot water supply is maintained at a set-point that may be a fixed value or be compensated against the external temperature. This paper presents a novel scheme that can determine the optimal set-point of hot water supply that maximizes the energy efficiency whilst providing sufficient heating capacity to the load. This scheme is based on Adaptive Neuro-Fuzzy Inferential System. The aim of this study is to improve the overall performance of district heating systems.展开更多
This paper introduces a powerful design and analysis tool named SIMCAT, that is developed to support applications to license a CANDU nuclear reactor, refurbish projects, and support the existing CANDU stations. It con...This paper introduces a powerful design and analysis tool named SIMCAT, that is developed to support applications to license a CANDU nuclear reactor, refurbish projects, and support the existing CANDU stations. It consists of the CATHENA (Canadian Algorithm for Thermo-Hydraulic Network Analysis), the control logics from C6SIM (CANDU 6 Analytical Simulator), and a communication protocol, PVM (parallel virtual machine). This is the first time that CATHENA has been successfully coupled directly with a program written in another language. The independence of CATHENA and the C6SIM controllers allows the development of both CATHENA and C6SIM controller to proceed independently.展开更多
文摘In order to improve the detection accuracy of Doppler asymmetric spatial heterodyne(DASH)interferometer in harsh temperatures,an opto-mechanical-thermal integration analysis is carried out.Firstly,the correlation between the interference phase and temperature is established according to the working principle and the phase algorithm of the interferometer.Secondly,the optical mechanical thermal analysis model and thermal deformation data acquisition model are designed.The deformation data of the interference module and the imaging optical system at different temperatures are given by temperature load simulation analysis,and the phase error caused by thermal deformation is obtained by fitting.Finally,based on the wind speed error caused by thermal deformation of each component,a reasonable temperature control scheme is proposed.The results show that the interference module occupies the main cause,the temperature must be controlled within(20±0.05)℃,and the temperature control should be carried out for the temperature sensitive parts,and the wind speed error caused by the part is 3.8 m/s.The thermal drift between the magnification of the imaging optical system and the thermal drift of the relative position between the imaging optical system and the detector should occupy the secondary cause,which should be controlled within(20±2)℃,and the wind speed error caused by the part is 3.05 m/s.In summary,the wind measurement error caused by interference module,imaging optical system,and the relative position between the imaging optical system and the detector can be controlled within 6.85 m/s.The analysis and temperature control schemes presented in this paper can provide theoretical basis for DASH interferometer engineering applications.
文摘In this research paper, an attempt has been made to come across the effect of distance between double glazing on the efficiency of a solar thermal collector. Experiments were carded out on an active solar energy demonstration system (ET 200). Commercial glass pane of 3 mm thick having the same dimensions as that of the apparatus was placed above the collector at a distance of 2 cm, 4 cm and 6 cm. Tests were done with and without the added glass. Experiments were performed for double glazing with two positions of the light meter. In one position, it was placed in the middle of the collector surface. While, in the other one, the light meter was placed in the middle of the added glass. To study the effect of double glazing on the performance of the solar collector ET 200, the correct position of the light meter was to place it exactly in the middle of the additional pane under the lamp. Double glazing does not enhance the performance of the solar collector because of the high resistance of the system glass air glass. The efficiency of double glazing solar collector decreases with the increasing the distance of the two separated glasses.
文摘The control of heat exchange stations in district heating system is critical for the overall energy efficiency and can be very difficult due to high level of complexity. A conventional method is to control the equipment such that the temperature of hot water supply is maintained at a set-point that may be a fixed value or be compensated against the external temperature. This paper presents a novel scheme that can determine the optimal set-point of hot water supply that maximizes the energy efficiency whilst providing sufficient heating capacity to the load. This scheme is based on Adaptive Neuro-Fuzzy Inferential System. The aim of this study is to improve the overall performance of district heating systems.
文摘This paper introduces a powerful design and analysis tool named SIMCAT, that is developed to support applications to license a CANDU nuclear reactor, refurbish projects, and support the existing CANDU stations. It consists of the CATHENA (Canadian Algorithm for Thermo-Hydraulic Network Analysis), the control logics from C6SIM (CANDU 6 Analytical Simulator), and a communication protocol, PVM (parallel virtual machine). This is the first time that CATHENA has been successfully coupled directly with a program written in another language. The independence of CATHENA and the C6SIM controllers allows the development of both CATHENA and C6SIM controller to proceed independently.