High-quality graphene coating was directly grown on stainless steel meshes via chemical vapor deposition process,during which the morphology of the stainless steel was transformed rugged.When the graphene-coated stain...High-quality graphene coating was directly grown on stainless steel meshes via chemical vapor deposition process,during which the morphology of the stainless steel was transformed rugged.When the graphene-coated stainless steel meshes were applied as current collectors of supercapacitors,the changes of the appearance and the graphene coating improved the contact between stainless steel meshes and the active materials,thus benefiting the performance of the supercapacitors.Furthermore,this simple method can be used to prepare the enhanced current collectors for other energy storage devices.展开更多
A wearable and high-precision sensor for sound signal acquisition and recognition was fabricated from thin films of specially designed graphene woven fabrics (GWFs). Upon being stretched, a high density of random cr...A wearable and high-precision sensor for sound signal acquisition and recognition was fabricated from thin films of specially designed graphene woven fabrics (GWFs). Upon being stretched, a high density of random cracks appears in the network, which decreases the current pathways, thereby increasing the resistance. Therefore, the film could act as a strain sensor on the human throat in order to measure one's speech through muscle movement, regardless of whether or not a sound is produced. The ultra-high sensitivity allows for the realization of rapid and low-frequency speech sampling by extracting the signature characteristics of sound waves. In this study, representative signals of 26 English letters, typical Chinese characters and tones, and even phrases and sentences were tested, revealing obvious and characteristic changes in resistance. Furthermore, resistance changes of the graphene sensor responded perfectly with pre-recorded sounds. By combining artificial intelligence with digital signal processing, we expect that, in the future, this graphene sensor will be able to successfully negotiate complex acoustic systems and large quantities of audio data.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.20973044,21173057,21103030)the Ministry of Science and Technology of China(Grant Nos.2012CB933400,2012CB-933403)
文摘High-quality graphene coating was directly grown on stainless steel meshes via chemical vapor deposition process,during which the morphology of the stainless steel was transformed rugged.When the graphene-coated stainless steel meshes were applied as current collectors of supercapacitors,the changes of the appearance and the graphene coating improved the contact between stainless steel meshes and the active materials,thus benefiting the performance of the supercapacitors.Furthermore,this simple method can be used to prepare the enhanced current collectors for other energy storage devices.
基金This work was supported by Beijing Science and Technology Program (No. D141100000514001), National Natural Science Foundation of China (No. 51372133), and National Program on Key Basic Research Project (Nos. 2011CB013000 and 2014CB932401)
文摘A wearable and high-precision sensor for sound signal acquisition and recognition was fabricated from thin films of specially designed graphene woven fabrics (GWFs). Upon being stretched, a high density of random cracks appears in the network, which decreases the current pathways, thereby increasing the resistance. Therefore, the film could act as a strain sensor on the human throat in order to measure one's speech through muscle movement, regardless of whether or not a sound is produced. The ultra-high sensitivity allows for the realization of rapid and low-frequency speech sampling by extracting the signature characteristics of sound waves. In this study, representative signals of 26 English letters, typical Chinese characters and tones, and even phrases and sentences were tested, revealing obvious and characteristic changes in resistance. Furthermore, resistance changes of the graphene sensor responded perfectly with pre-recorded sounds. By combining artificial intelligence with digital signal processing, we expect that, in the future, this graphene sensor will be able to successfully negotiate complex acoustic systems and large quantities of audio data.