Considering the defects of low accuracy and slow speed existing in traditional flood loss assessment, firstly, the technical route of flood loss assessment was presented based on the neural network ensemble. Secondly,...Considering the defects of low accuracy and slow speed existing in traditional flood loss assessment, firstly, the technical route of flood loss assessment was presented based on the neural network ensemble. Secondly, through the study of certain country of Poyang Lake district, the flood loss assessment indicators of the test area were analyzed and extracted by utilizing analytic hierarchy process (AHP), and the weights of the impact factors were assigned. Subsequently, the approaches to generate individuals and conclusions of neural network ensemble model were also investigated. In the platform of C# language and neural network library under AForge.NET open source, a flood loss assessment program which could rapidly build neural network ensemble models was developed. Finally, the proposed method was tested and verified. The comparison results between the assessment results of the proposed method and the actual statistical flood loss proved the feasibility of this method, thus a new approach for flood loss assessment was provided.展开更多
A rough set based corner classification neural network, the Rough-CC4, is presented to solve document classification problems such as document representation of different document sizes, document feature selection and...A rough set based corner classification neural network, the Rough-CC4, is presented to solve document classification problems such as document representation of different document sizes, document feature selection and document feature encoding. In the Rough-CC4, the documents are described by the equivalent classes of the approximate words. By this method, the dimensions representing the documents can be reduced, which can solve the precision problems caused by the different document sizes and also blur the differences caused by the approximate words. In the Rough-CC4, a binary encoding method is introduced, through which the importance of documents relative to each equivalent class is encoded. By this encoding method, the precision of the Rough-CC4 is improved greatly and the space complexity of the Rough-CC4 is reduced. The Rough-CC4 can be used in automatic classification of documents.展开更多
A novel spatial interpolation method based on integrated radial basis function artificial neural networks (IRBFANNs) is proposed to provide accurate and stable predictions of heavy metals concentrations in soil at u...A novel spatial interpolation method based on integrated radial basis function artificial neural networks (IRBFANNs) is proposed to provide accurate and stable predictions of heavy metals concentrations in soil at un- sampled sites in a mountain region. The IRBFANNs hybridize the advantages of the artificial neural networks and the neural networks integration approach. Three experimental projects under different sampling densities are carried out to study the performance of the proposed IRBFANNs-based interpolation method. This novel method is compared with six peer spatial interpolation methods based on the root mean square error and visual evaluation of the distribution maps of Mn elements. The experimental results show that the proposed method performs better in accuracy and stability. Moreover, the proposed method can provide more details in the spatial distribution maps than the compared interpolation methods in the cases of sparse sampling density.展开更多
The multiple classifier system (MCS), composed of multiple diverse classifiers or feed-forward neural networks, can significantly improve the classification or generalization ability of a single classifier. Enlighte...The multiple classifier system (MCS), composed of multiple diverse classifiers or feed-forward neural networks, can significantly improve the classification or generalization ability of a single classifier. Enlightened by the fundamental idea of MCS, the ensemble is introduced into the quick learning for bidirectional associative memory (QLBAM) to construct a BAM ensemble, for improving the storage capacity and the error-correction capability without destroying the simple structure of the component BAM. Simulations show that, with an appropriate "overproduce and choose" strategy or "thinning" algorithm, the proposed BAM ensemble significantly outperforms the single QLBAM in both storage capacity and noise-tolerance capability.展开更多
We developed and tested an improved neural network to predict the average concentration of PM10(particulate matter with diameter smaller than 10 ?m) several hours in advance in summer in Beijing.A genetic algorithm op...We developed and tested an improved neural network to predict the average concentration of PM10(particulate matter with diameter smaller than 10 ?m) several hours in advance in summer in Beijing.A genetic algorithm optimization procedure for optimizing initial weights and thresholds of the neural network was also evaluated.This research was based upon the PM10 data from seven monitoring sites in Beijing urban region and meteorological observation data,which were recorded every 3 h during summer of 2002.Two neural network models were developed.Model I was built for predicting PM10 concentrations 3 h in advance while Model II for one day in advance.The predictions of both models were found to be consistent with observations.Percent errors in forecasting the numerical value were about 20.This brings us to the conclusion that short-term fluctuations of PM10 concentrations in Beijing urban region in summer are to a large extent driven by meteorological conditions.Moreover,the predicted results of Model II were compared with the ones provided by the Models-3 Community Multiscale Air Quality(CMAQ) modeling system.The mean relative errors of both models were 0.21 and 0.26,respectively.The performance of the neural network model was similar to numerical models,when applied to short-time prediction of PM10 concentration.展开更多
PM_(2.5) forecasting technology can provide a scientific and effective way to assist environmental governance and protect public health.To forecast PM_(2.5),an enhanced hybrid ensemble deep learning model is proposed ...PM_(2.5) forecasting technology can provide a scientific and effective way to assist environmental governance and protect public health.To forecast PM_(2.5),an enhanced hybrid ensemble deep learning model is proposed in this research.The whole framework of the proposed model can be generalized as follows:the original PM_(2.5) series is decomposed into 8 sub-series with different frequency characteristics by variational mode decomposition(VMD);the long short-term memory(LSTM)network,echo state network(ESN),and temporal convolutional network(TCN)are applied for parallel forecasting for 8 different frequency PM_(2.5) sub-series;the gradient boosting decision tree(GBDT)is applied to assemble and reconstruct the forecasting results of LSTM,ESN and TCN.By comparing the forecasting data of the models over 3 PM_(2.5) series collected from Shenyang,Changsha and Shenzhen,the conclusions can be drawn that GBDT is a more effective method to integrate the forecasting result than traditional heuristic algorithms;MAE values of the proposed model on 3 PM_(2.5) series are 1.587,1.718 and 1.327μg/m3,respectively and the proposed model achieves more accurate results for all experiments than sixteen alternative forecasting models which contain three state-of-the-art models.展开更多
Decreasing the acetic acid consumption in purified terephthalic acid (PTA) solvent system has become a hot issue with common concern. In accordance with the technical features, the electrical conductivity is in dire...Decreasing the acetic acid consumption in purified terephthalic acid (PTA) solvent system has become a hot issue with common concern. In accordance with the technical features, the electrical conductivity is in direct proportion to the acetic acid content. General regression neural network (GRNN) is used to establish the model of electrical conductivity on the basis of mechanism analysis, and then particle swarm optimization (PSO) algorithm with the improvement of inertia weight and population diversity is proposed to regulate the operating conditions. Thus, the method of decreasing the acid loss is derived and applied to PTA solvent system in a chemical plant. Cases studies show that the precision of modeling and optimization are higher. The results also provide the optimal operating conditions, which decrease the cost and improve the profit.展开更多
Intelligence-benefiting acupuncturerefers to the acupuncture-moxibustiontreatment of intellectual disturbances byremoving obstructions in channels andcollaterals,regulating yin and yang,andeliminating pathogenic facto...Intelligence-benefiting acupuncturerefers to the acupuncture-moxibustiontreatment of intellectual disturbances byremoving obstructions in channels andcollaterals,regulating yin and yang,andeliminating pathogenic factors to strengthenthe body resistance,with the effects ofstrengthening the brain,benefiting intelligence,展开更多
The concepts of information fusion and the basic principles of neural networks are introduced. Neural net-works were introduced as a way of building an information fusion model in a coal mine monitoring system. This a...The concepts of information fusion and the basic principles of neural networks are introduced. Neural net-works were introduced as a way of building an information fusion model in a coal mine monitoring system. This assures the accurate transmission of the multi-sensor information that comes from the coal mine monitoring systems. The in-formation fusion mode was analyzed. An algorithm was designed based on this analysis and some simulation results were given. Finally,conclusions that could provide auxiliary decision making information to the coal mine dispatching officers were presented.展开更多
Because of the difficulty in deciding on the structure of BP neural network in operational meteorological application and the tendency for the network to transform to an issue of local solution, a hybrid Particle Swar...Because of the difficulty in deciding on the structure of BP neural network in operational meteorological application and the tendency for the network to transform to an issue of local solution, a hybrid Particle Swarm Optimization Algorithm based on Artificial Neural Network (PSO-BP) model is proposed for monthly mean rainfall of the whole area of Guangxi. It combines Particle Swarm Optimization (PSO) with BP, that is, the number of hidden nodes and connection weights are optimized by the implementation of PSO operation. The method produces a better network architecture and initial connection weights, trains the traditional backward propagation again by training samples. The ensemble strategy is carried out for the linear programming to calculate the best weights based on the "east sum of the error absolute value" as the optimal rule. The weighted coefficient of each ensemble individual is obtained. The results show that the method can effectively improve learning and generalization ability of the neural network.展开更多
Wafer bin map(WBM)inspection is a critical approach for evaluating the semiconductor manufacturing process.An excellent inspection algorithm can improve the production efficiency and yield.This paper proposes a WBM de...Wafer bin map(WBM)inspection is a critical approach for evaluating the semiconductor manufacturing process.An excellent inspection algorithm can improve the production efficiency and yield.This paper proposes a WBM defect pattern inspection strategy based on the DenseNet deep learning model,the structure and training loss function are improved according to the characteristics of the WBM.In addition,a constrained mean filtering algorithm is proposed to filter the noise grains.In model prediction,an entropy-based Monte Carlo dropout algorithm is employed to quantify the uncertainty of the model decision.The experimental results show that the recognition ability of the improved DenseNet is better than that of traditional algorithms in terms of typical WBM defect patterns.Analyzing the model uncertainty can not only effectively reduce the miss or false detection rate but also help to identify new patterns.展开更多
Objective: The aim of the work was to compare the dosimetric results that were obtained by using two treatment planning systems (TPS) Siemens KonRad version 2.2.23, Elekta XiO version 4.4 to perform a simultaneous ...Objective: The aim of the work was to compare the dosimetric results that were obtained by using two treatment planning systems (TPS) Siemens KonRad version 2.2.23, Elekta XiO version 4.4 to perform a simultaneous integrated boost (SIB) for head and neck and central nervous system (CNS) cases in paediatric patients. Methods: The CT scan data for five paediatric patients, with head and neck and CNS tumors, were transferred into both of the TPSs. Clinical step-and-shoot intensity-modulated radiotherapy (IMRT) treatment plans were designed using 6 MV photon beam for delivery on a Siemens Oncor Accelerator with multileaf collimator MLC (82 leaf). Plans were optimized to achieve the same clinical objectives using the same beam energy, number and direction of beams. The analysis was based on isodose distributions, the dose volume histogram (DVH) for planning target volume (PTV) and the relevant organs at risk (OARs) as well as volume receiving 2 Gy and 5 Gy, also total number of segments, MU/segment, and the number of MU/cGy had been investigated. Treatment delivery time and conformation number were two other parameters in this study. Results: The segmentation using KonRad was more efficient, resulting in fewer segments (reduction between 13.2% and 48.3%), fewer M Us (reduction between 10.7% and 33%) and that reflected on treatment delivery times to be shorter by up to 8 rain or 46%. In most of the cases KonRad had the highest volume receiving in excess of 2 and 5 Gy, and XiO showed the lowest. Also KonRad achieved slightly better conformality (0.76 ± 0.054) than XiO (0.73 ± 0.05) while XiO presented a higher modulation factor value (3.3 MU/cGy) than KonRad (2.4 MU/cGy). Conclusion: The KonRad treatment planning system was found to be superior to the XiO treatment planning system. This is true for the possible increase of radiation-induced secondary malignancies as well as for the local control.展开更多
Chemical processes are complex, for which traditional neural network models usually can not lead to satisfactory accuracy. Selective neural network ensemble is an effective way to enhance the generalization accuracy o...Chemical processes are complex, for which traditional neural network models usually can not lead to satisfactory accuracy. Selective neural network ensemble is an effective way to enhance the generalization accuracy of networks, but there are some problems, e.g., lacking of unified definition of diversity among component neural networks and difficult to improve the accuracy by selecting if the diversities of available networks are small. In this study, the output errors of networks are vectorized, the diversity of networks is defined based on the error vectors, and the size of ensemble is analyzed. Then an error vectorization based selective neural network ensemble (EVSNE) is proposed, in which the error vector of each network can offset that of the other networks by training the component networks orderly. Thus the component networks have large diversity. Experiments and comparisons over standard data sets and actual chemical process data set for production of high-density polyethylene demonstrate that EVSNE performs better in generalization ability.展开更多
基金Project(41061041)supported by the National Natural Science Foundation of ChinaProject(2010gzs0084)supported by the Natural Science Foundation of Jiangxi Province,China
文摘Considering the defects of low accuracy and slow speed existing in traditional flood loss assessment, firstly, the technical route of flood loss assessment was presented based on the neural network ensemble. Secondly, through the study of certain country of Poyang Lake district, the flood loss assessment indicators of the test area were analyzed and extracted by utilizing analytic hierarchy process (AHP), and the weights of the impact factors were assigned. Subsequently, the approaches to generate individuals and conclusions of neural network ensemble model were also investigated. In the platform of C# language and neural network library under AForge.NET open source, a flood loss assessment program which could rapidly build neural network ensemble models was developed. Finally, the proposed method was tested and verified. The comparison results between the assessment results of the proposed method and the actual statistical flood loss proved the feasibility of this method, thus a new approach for flood loss assessment was provided.
基金The National Natural Science Foundation of China(No.60503020,60373066,60403016,60425206),the Natural Science Foundation of Jiangsu Higher Education Institutions ( No.04KJB520096),the Doctoral Foundation of Nanjing University of Posts and Telecommunication (No.0302).
文摘A rough set based corner classification neural network, the Rough-CC4, is presented to solve document classification problems such as document representation of different document sizes, document feature selection and document feature encoding. In the Rough-CC4, the documents are described by the equivalent classes of the approximate words. By this method, the dimensions representing the documents can be reduced, which can solve the precision problems caused by the different document sizes and also blur the differences caused by the approximate words. In the Rough-CC4, a binary encoding method is introduced, through which the importance of documents relative to each equivalent class is encoded. By this encoding method, the precision of the Rough-CC4 is improved greatly and the space complexity of the Rough-CC4 is reduced. The Rough-CC4 can be used in automatic classification of documents.
基金The National Natural Science Foundation of China(No.61261007,61062005)the Key Program of Yunnan Natural Science Foundation(No.2013FA008)
文摘A novel spatial interpolation method based on integrated radial basis function artificial neural networks (IRBFANNs) is proposed to provide accurate and stable predictions of heavy metals concentrations in soil at un- sampled sites in a mountain region. The IRBFANNs hybridize the advantages of the artificial neural networks and the neural networks integration approach. Three experimental projects under different sampling densities are carried out to study the performance of the proposed IRBFANNs-based interpolation method. This novel method is compared with six peer spatial interpolation methods based on the root mean square error and visual evaluation of the distribution maps of Mn elements. The experimental results show that the proposed method performs better in accuracy and stability. Moreover, the proposed method can provide more details in the spatial distribution maps than the compared interpolation methods in the cases of sparse sampling density.
文摘The multiple classifier system (MCS), composed of multiple diverse classifiers or feed-forward neural networks, can significantly improve the classification or generalization ability of a single classifier. Enlightened by the fundamental idea of MCS, the ensemble is introduced into the quick learning for bidirectional associative memory (QLBAM) to construct a BAM ensemble, for improving the storage capacity and the error-correction capability without destroying the simple structure of the component BAM. Simulations show that, with an appropriate "overproduce and choose" strategy or "thinning" algorithm, the proposed BAM ensemble significantly outperforms the single QLBAM in both storage capacity and noise-tolerance capability.
基金Funded by the High Technology Project(863) of the Ministry of Science and Technology of China(No. 2006AA06A305,6,7)
文摘We developed and tested an improved neural network to predict the average concentration of PM10(particulate matter with diameter smaller than 10 ?m) several hours in advance in summer in Beijing.A genetic algorithm optimization procedure for optimizing initial weights and thresholds of the neural network was also evaluated.This research was based upon the PM10 data from seven monitoring sites in Beijing urban region and meteorological observation data,which were recorded every 3 h during summer of 2002.Two neural network models were developed.Model I was built for predicting PM10 concentrations 3 h in advance while Model II for one day in advance.The predictions of both models were found to be consistent with observations.Percent errors in forecasting the numerical value were about 20.This brings us to the conclusion that short-term fluctuations of PM10 concentrations in Beijing urban region in summer are to a large extent driven by meteorological conditions.Moreover,the predicted results of Model II were compared with the ones provided by the Models-3 Community Multiscale Air Quality(CMAQ) modeling system.The mean relative errors of both models were 0.21 and 0.26,respectively.The performance of the neural network model was similar to numerical models,when applied to short-time prediction of PM10 concentration.
基金Project(52072412)supported by the National Natural Science Foundation of ChinaProject(2019CX005)supported by the Innovation Driven Project of the Central South University,China。
文摘PM_(2.5) forecasting technology can provide a scientific and effective way to assist environmental governance and protect public health.To forecast PM_(2.5),an enhanced hybrid ensemble deep learning model is proposed in this research.The whole framework of the proposed model can be generalized as follows:the original PM_(2.5) series is decomposed into 8 sub-series with different frequency characteristics by variational mode decomposition(VMD);the long short-term memory(LSTM)network,echo state network(ESN),and temporal convolutional network(TCN)are applied for parallel forecasting for 8 different frequency PM_(2.5) sub-series;the gradient boosting decision tree(GBDT)is applied to assemble and reconstruct the forecasting results of LSTM,ESN and TCN.By comparing the forecasting data of the models over 3 PM_(2.5) series collected from Shenyang,Changsha and Shenzhen,the conclusions can be drawn that GBDT is a more effective method to integrate the forecasting result than traditional heuristic algorithms;MAE values of the proposed model on 3 PM_(2.5) series are 1.587,1.718 and 1.327μg/m3,respectively and the proposed model achieves more accurate results for all experiments than sixteen alternative forecasting models which contain three state-of-the-art models.
基金Supported by the National Natural Science Foundation of China (60774079), the National High Technology Research and Development Program of China (2006AA04Z184), and Sinopec Science & Technology Development Project of China (205073).
文摘Decreasing the acetic acid consumption in purified terephthalic acid (PTA) solvent system has become a hot issue with common concern. In accordance with the technical features, the electrical conductivity is in direct proportion to the acetic acid content. General regression neural network (GRNN) is used to establish the model of electrical conductivity on the basis of mechanism analysis, and then particle swarm optimization (PSO) algorithm with the improvement of inertia weight and population diversity is proposed to regulate the operating conditions. Thus, the method of decreasing the acid loss is derived and applied to PTA solvent system in a chemical plant. Cases studies show that the precision of modeling and optimization are higher. The results also provide the optimal operating conditions, which decrease the cost and improve the profit.
文摘Intelligence-benefiting acupuncturerefers to the acupuncture-moxibustiontreatment of intellectual disturbances byremoving obstructions in channels andcollaterals,regulating yin and yang,andeliminating pathogenic factors to strengthenthe body resistance,with the effects ofstrengthening the brain,benefiting intelligence,
基金project BK2001073 supported by Jiangsu Province Natural Science Foundation
文摘The concepts of information fusion and the basic principles of neural networks are introduced. Neural net-works were introduced as a way of building an information fusion model in a coal mine monitoring system. This assures the accurate transmission of the multi-sensor information that comes from the coal mine monitoring systems. The in-formation fusion mode was analyzed. An algorithm was designed based on this analysis and some simulation results were given. Finally,conclusions that could provide auxiliary decision making information to the coal mine dispatching officers were presented.
基金Natural Science Foundation of Guangxi (0832019Z)Natural Science Foundation of China (40675023)
文摘Because of the difficulty in deciding on the structure of BP neural network in operational meteorological application and the tendency for the network to transform to an issue of local solution, a hybrid Particle Swarm Optimization Algorithm based on Artificial Neural Network (PSO-BP) model is proposed for monthly mean rainfall of the whole area of Guangxi. It combines Particle Swarm Optimization (PSO) with BP, that is, the number of hidden nodes and connection weights are optimized by the implementation of PSO operation. The method produces a better network architecture and initial connection weights, trains the traditional backward propagation again by training samples. The ensemble strategy is carried out for the linear programming to calculate the best weights based on the "east sum of the error absolute value" as the optimal rule. The weighted coefficient of each ensemble individual is obtained. The results show that the method can effectively improve learning and generalization ability of the neural network.
基金Project(Z135060009002)supported by the Ministry of Industry and Information Technology of ChinaProject(KZ202010005004)supported by Beijing Municipal Commission of Education and Beijing Municipal Natural Science Foundation of China。
文摘Wafer bin map(WBM)inspection is a critical approach for evaluating the semiconductor manufacturing process.An excellent inspection algorithm can improve the production efficiency and yield.This paper proposes a WBM defect pattern inspection strategy based on the DenseNet deep learning model,the structure and training loss function are improved according to the characteristics of the WBM.In addition,a constrained mean filtering algorithm is proposed to filter the noise grains.In model prediction,an entropy-based Monte Carlo dropout algorithm is employed to quantify the uncertainty of the model decision.The experimental results show that the recognition ability of the improved DenseNet is better than that of traditional algorithms in terms of typical WBM defect patterns.Analyzing the model uncertainty can not only effectively reduce the miss or false detection rate but also help to identify new patterns.
文摘Objective: The aim of the work was to compare the dosimetric results that were obtained by using two treatment planning systems (TPS) Siemens KonRad version 2.2.23, Elekta XiO version 4.4 to perform a simultaneous integrated boost (SIB) for head and neck and central nervous system (CNS) cases in paediatric patients. Methods: The CT scan data for five paediatric patients, with head and neck and CNS tumors, were transferred into both of the TPSs. Clinical step-and-shoot intensity-modulated radiotherapy (IMRT) treatment plans were designed using 6 MV photon beam for delivery on a Siemens Oncor Accelerator with multileaf collimator MLC (82 leaf). Plans were optimized to achieve the same clinical objectives using the same beam energy, number and direction of beams. The analysis was based on isodose distributions, the dose volume histogram (DVH) for planning target volume (PTV) and the relevant organs at risk (OARs) as well as volume receiving 2 Gy and 5 Gy, also total number of segments, MU/segment, and the number of MU/cGy had been investigated. Treatment delivery time and conformation number were two other parameters in this study. Results: The segmentation using KonRad was more efficient, resulting in fewer segments (reduction between 13.2% and 48.3%), fewer M Us (reduction between 10.7% and 33%) and that reflected on treatment delivery times to be shorter by up to 8 rain or 46%. In most of the cases KonRad had the highest volume receiving in excess of 2 and 5 Gy, and XiO showed the lowest. Also KonRad achieved slightly better conformality (0.76 ± 0.054) than XiO (0.73 ± 0.05) while XiO presented a higher modulation factor value (3.3 MU/cGy) than KonRad (2.4 MU/cGy). Conclusion: The KonRad treatment planning system was found to be superior to the XiO treatment planning system. This is true for the possible increase of radiation-induced secondary malignancies as well as for the local control.
基金Supported by the National Natural Science Foundation of China (61074153, 61104131)the Fundamental Research Fundsfor Central Universities of China (ZY1111, JD1104)
文摘Chemical processes are complex, for which traditional neural network models usually can not lead to satisfactory accuracy. Selective neural network ensemble is an effective way to enhance the generalization accuracy of networks, but there are some problems, e.g., lacking of unified definition of diversity among component neural networks and difficult to improve the accuracy by selecting if the diversities of available networks are small. In this study, the output errors of networks are vectorized, the diversity of networks is defined based on the error vectors, and the size of ensemble is analyzed. Then an error vectorization based selective neural network ensemble (EVSNE) is proposed, in which the error vector of each network can offset that of the other networks by training the component networks orderly. Thus the component networks have large diversity. Experiments and comparisons over standard data sets and actual chemical process data set for production of high-density polyethylene demonstrate that EVSNE performs better in generalization ability.