We propose a monomer adsorption model, in which only the monomers are allowed to diffuse and adsorb onto other clusters. By means of the generalized rate equation we investigate the kinetic behavior of the system with...We propose a monomer adsorption model, in which only the monomers are allowed to diffuse and adsorb onto other clusters. By means of the generalized rate equation we investigate the kinetic behavior of the system with a special rate kernel. For the system without monomer input, the concentration aj(t) of the Aj clusters (j 〉 1) asymptotically retains a nonzero quantity, while for the system with monomer input, it decays with time and vanishes finally. We also investigate the kinetics of an interesting model with fixed-rate monomer adsorption. For the ease without monomer source, the evolution of the system will halt at a finite time; while the system evolves infinitely in time in the case with monomer source. Finally, we also suggest a connection between the fixed-rate monomer adsorption systems and growing networks.展开更多
The research on spatial epidemic models is a topic of considerable recent interest. In another hand, the advances in computer technology have stimulated the development of stochastic models. Metapopulation models are ...The research on spatial epidemic models is a topic of considerable recent interest. In another hand, the advances in computer technology have stimulated the development of stochastic models. Metapopulation models are spatial designs that involve movements of individuals between distinct subpopulations. The purpose of the present work has been to develop stochastic models in order to study the transmission dynamics and control of infectious diseases in metapopulations. The authors studied Susceptible-Infected-Susceptible (SIS) and Susceptible-lnfected-Recovered (SIR) epidemic schemes, using the Gillespie algorithm, Computational numerical simulations were carried in order to explore the models. The results obtained show how the dynamics of transmission and the application of control measures within each subpopulation may affect all subpopulations of the system. They also show how the distribution of control measures among subpopulations affects the efficacy of these strategies. The dynamics of the stochastic models developed in the current study follow the trends observed in the classic deterministic designs. Also, the present models exhibit fluctuating behavior. This work highlights the importance of the spatial distribution of the population in spread and control of infectious diseases. In addition, it shows how chance could play an important role in these scenarios.展开更多
Within the framework of the dynamical cluster decay model (DCM), the in evaporation cross-sections (σ1n) of cold fusion reactions (Pb and Bi targets) are calculated for ZCN = 104-113 superheavy nuclei. The calc...Within the framework of the dynamical cluster decay model (DCM), the in evaporation cross-sections (σ1n) of cold fusion reactions (Pb and Bi targets) are calculated for ZCN = 104-113 superheavy nuclei. The calculations are carried out in the fixed range of excitation energy ECN = 15 ± 1 MeV, so that the comparative analysis of reaction dynamics can be worked out. First of all, the fission barriers (Bf ) and neutron separation energies (S1n) are estimated to account the decreasing cross-sections of cold fusion reactions. In addition to this, the importance of hot optimum orientations of β24-deformed nuclei over cold one is explored at fixed angular momentum and neck-length parameters. The hot optimum orientations support all the target-projectile (t,p) combinations, which are explored experimentally in the cold fusion reactions. Some new target-projectile combinations are also predicted for future exploration. Further, the In cross-sections are addressed for ZCN = 104-113 superheavy nuclei at comparable excitation energies which show the decent agrement with experimental data upto ZCN = 109 nuclei. Finally, to understand the dynamics of higher-Z superheavy nuclei, the cross-sections are also calculated at maximum available energies around the Coulomb barrier and the effect of non-sticking moment of inertia (INS) is also investigated at these energies.展开更多
Using a molecular dynamics simulation technique,we compared several commonly used ion-water models to describe the microscopic structures and dynamics in KSCN aqueous solutions.Results are compared with observations o...Using a molecular dynamics simulation technique,we compared several commonly used ion-water models to describe the microscopic structures and dynamics in KSCN aqueous solutions.Results are compared with observations of femtosecond infrared vibrational-energy transfer and anisotropy measurements.The Jorgensen/TIP4P model is found to provide the best reproduction of clustering properties such as percentage of clustered ions,cluster-size distribution,concentration dependence of the water,and ion-rotation time constants.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos. 10775104 and 10305009
文摘We propose a monomer adsorption model, in which only the monomers are allowed to diffuse and adsorb onto other clusters. By means of the generalized rate equation we investigate the kinetic behavior of the system with a special rate kernel. For the system without monomer input, the concentration aj(t) of the Aj clusters (j 〉 1) asymptotically retains a nonzero quantity, while for the system with monomer input, it decays with time and vanishes finally. We also investigate the kinetics of an interesting model with fixed-rate monomer adsorption. For the ease without monomer source, the evolution of the system will halt at a finite time; while the system evolves infinitely in time in the case with monomer source. Finally, we also suggest a connection between the fixed-rate monomer adsorption systems and growing networks.
文摘The research on spatial epidemic models is a topic of considerable recent interest. In another hand, the advances in computer technology have stimulated the development of stochastic models. Metapopulation models are spatial designs that involve movements of individuals between distinct subpopulations. The purpose of the present work has been to develop stochastic models in order to study the transmission dynamics and control of infectious diseases in metapopulations. The authors studied Susceptible-Infected-Susceptible (SIS) and Susceptible-lnfected-Recovered (SIR) epidemic schemes, using the Gillespie algorithm, Computational numerical simulations were carried in order to explore the models. The results obtained show how the dynamics of transmission and the application of control measures within each subpopulation may affect all subpopulations of the system. They also show how the distribution of control measures among subpopulations affects the efficacy of these strategies. The dynamics of the stochastic models developed in the current study follow the trends observed in the classic deterministic designs. Also, the present models exhibit fluctuating behavior. This work highlights the importance of the spatial distribution of the population in spread and control of infectious diseases. In addition, it shows how chance could play an important role in these scenarios.
基金Supported by the Council of Scientific and Industrial Research(CSIR),in the Form of Research Project Grant No.03(1341)/15/EMR-Ⅱ and to DST,New DelhiINSPIRE-Fellowship Grant No.DST/INSPIRE/03/2015/000199
文摘Within the framework of the dynamical cluster decay model (DCM), the in evaporation cross-sections (σ1n) of cold fusion reactions (Pb and Bi targets) are calculated for ZCN = 104-113 superheavy nuclei. The calculations are carried out in the fixed range of excitation energy ECN = 15 ± 1 MeV, so that the comparative analysis of reaction dynamics can be worked out. First of all, the fission barriers (Bf ) and neutron separation energies (S1n) are estimated to account the decreasing cross-sections of cold fusion reactions. In addition to this, the importance of hot optimum orientations of β24-deformed nuclei over cold one is explored at fixed angular momentum and neck-length parameters. The hot optimum orientations support all the target-projectile (t,p) combinations, which are explored experimentally in the cold fusion reactions. Some new target-projectile combinations are also predicted for future exploration. Further, the In cross-sections are addressed for ZCN = 104-113 superheavy nuclei at comparable excitation energies which show the decent agrement with experimental data upto ZCN = 109 nuclei. Finally, to understand the dynamics of higher-Z superheavy nuclei, the cross-sections are also calculated at maximum available energies around the Coulomb barrier and the effect of non-sticking moment of inertia (INS) is also investigated at these energies.
基金supported by the National Natural Science Foundation of China(21003117,21203178,21033008)the National Key Scientific Instrument and Equipment Development Projects of China(2011YQ09000505)
文摘Using a molecular dynamics simulation technique,we compared several commonly used ion-water models to describe the microscopic structures and dynamics in KSCN aqueous solutions.Results are compared with observations of femtosecond infrared vibrational-energy transfer and anisotropy measurements.The Jorgensen/TIP4P model is found to provide the best reproduction of clustering properties such as percentage of clustered ions,cluster-size distribution,concentration dependence of the water,and ion-rotation time constants.