To study the aerodynamic performance of a new six-axis X2K double-deck container vehicle, numerical simulation was done based on three-dimensional, steady Navier-Stokes equations and k-e turbulence model. The results ...To study the aerodynamic performance of a new six-axis X2K double-deck container vehicle, numerical simulation was done based on three-dimensional, steady Navier-Stokes equations and k-e turbulence model. The results show that the pressure on the front surface of vehicle is positive, and others are negative. The maximum negative one appears as a "gate" shape on front surfaces. The pressure on vehicle increases with train speed, and pressure on vehicles with cross-loaded structure is smaller than that without it. The airflow around vehicles is symmetrical about train vertical axis, and the flow velocity decreases gradually along the axis to ground. Airflow around vehicles with cross-loaded structure is weaker than that without the structure. The aerodynamic drag increases linearly with the train speed, and it is minimum for the mid-vehicle. The linear coefficient for mid-vehicle without cross-loaded structure is 29.75, nearly one time larger than that with the structure valued as 15.425. So, from the view-point of aerodynamic drag, the cross-loaded structure is more reasonable for the six-axis X2K double-deck container vehicle.展开更多
Absolute commitment to reduce the impact of greenhouse gas emissions while increasing fuel efficiency and power density requires further enhancement of prime mover characteristics and special coatings, but mostly requ...Absolute commitment to reduce the impact of greenhouse gas emissions while increasing fuel efficiency and power density requires further enhancement of prime mover characteristics and special coatings, but mostly requires compliance with EEDI (energy efficiency design index) measures. For the container shipping industry this represents significant increases in fuel costs that can be mitigated above all by reduction of power demand, that is, of ship frictional resistance. In this respect, this paper discusses advantages attainable by application of the ACS (air cavity system) technology on the basis of recent KSRC (Krylov State Research Centre) studies Savings in operating costs yielded by the enhanced propulsion performance for ships fitted with this system are illustrated by a case study of a containership.展开更多
To investigate the long-term operating efficiencies of container ports, we extend the work of previous researches to present a new systemic and improved method of data envelopment analysis (DEA)-based Malmquist prod...To investigate the long-term operating efficiencies of container ports, we extend the work of previous researches to present a new systemic and improved method of data envelopment analysis (DEA)-based Malmquist productivity index (MPI) in this paper. An approach based on both panel data and multi-inputs/outputs is considered comprehensively, and aims at measuring the operating efficiencies of 10 leading container ports in China from 2001 to 2006 by applying this new systematic influence factor of total factor productivity change is the calculation method. The results illustrate that the main technology change, and the container transportation of these 10 ports is on the healthy development status and will recover and grow reposefully in the following years展开更多
基金Project(50975289) supported by the National Natural Science Foundation of ChinaProject(2009J007-C) supported by the Technological Research and Development Program of the Ministry of Railways,ChinaProject(CX2010B122) supported by Hunan Provincial Innovation Foundation for Postgraduate Students,China
文摘To study the aerodynamic performance of a new six-axis X2K double-deck container vehicle, numerical simulation was done based on three-dimensional, steady Navier-Stokes equations and k-e turbulence model. The results show that the pressure on the front surface of vehicle is positive, and others are negative. The maximum negative one appears as a "gate" shape on front surfaces. The pressure on vehicle increases with train speed, and pressure on vehicles with cross-loaded structure is smaller than that without it. The airflow around vehicles is symmetrical about train vertical axis, and the flow velocity decreases gradually along the axis to ground. Airflow around vehicles with cross-loaded structure is weaker than that without the structure. The aerodynamic drag increases linearly with the train speed, and it is minimum for the mid-vehicle. The linear coefficient for mid-vehicle without cross-loaded structure is 29.75, nearly one time larger than that with the structure valued as 15.425. So, from the view-point of aerodynamic drag, the cross-loaded structure is more reasonable for the six-axis X2K double-deck container vehicle.
文摘Absolute commitment to reduce the impact of greenhouse gas emissions while increasing fuel efficiency and power density requires further enhancement of prime mover characteristics and special coatings, but mostly requires compliance with EEDI (energy efficiency design index) measures. For the container shipping industry this represents significant increases in fuel costs that can be mitigated above all by reduction of power demand, that is, of ship frictional resistance. In this respect, this paper discusses advantages attainable by application of the ACS (air cavity system) technology on the basis of recent KSRC (Krylov State Research Centre) studies Savings in operating costs yielded by the enhanced propulsion performance for ships fitted with this system are illustrated by a case study of a containership.
基金the National Natural Science Foundation of China (No. 50578030)
文摘To investigate the long-term operating efficiencies of container ports, we extend the work of previous researches to present a new systemic and improved method of data envelopment analysis (DEA)-based Malmquist productivity index (MPI) in this paper. An approach based on both panel data and multi-inputs/outputs is considered comprehensively, and aims at measuring the operating efficiencies of 10 leading container ports in China from 2001 to 2006 by applying this new systematic influence factor of total factor productivity change is the calculation method. The results illustrate that the main technology change, and the container transportation of these 10 ports is on the healthy development status and will recover and grow reposefully in the following years