基于轨道交通自动售检票系统(Automatic Fare Collection,AFC)统计获得的集计型客流数据,依据行为分析理论,提出1种适用于路网结构变化条件下的城轨站间客流量分布预测模型。首先,基于随机效用最大化理论,构建乘客目的地选择模型,选取...基于轨道交通自动售检票系统(Automatic Fare Collection,AFC)统计获得的集计型客流数据,依据行为分析理论,提出1种适用于路网结构变化条件下的城轨站间客流量分布预测模型。首先,基于随机效用最大化理论,构建乘客目的地选择模型,选取终点站吸引客流量、列车运行时间、乘客在站换乘时间、乘客换乘次数、起终点站的线位关系和站点属性6个指标构建效用函数,以反映目的地吸引力、城轨服务水平、起终点站之间的线位匹配关系等对乘客目的地选择行为的影响,在此基础上,建立站间客流量分布预测模型;然后,利用代表个人法将AFC数据转化为非集计型数据,基于WESML(Weighted Exogenous Sampling Maximum Likelihood)估计方法,实现对目的地选择的非集计预测模型的参数标定。采用广州地铁6号线开通前后的AFC数据,对该预测模型的预测效果进行检验。结果表明:在新线接入导致地铁线网结构发生变化的条件下,全线网站间客流量分布预测的平均绝对误差仅为36人,因此该预测模型具有较高的预测精度。展开更多
Due to the enormous harm of virus propagation,research regarding virus immunizations still absolutely necessary.In comparison to current researches,a new virus immunization method the hierarchical virus immunization m...Due to the enormous harm of virus propagation,research regarding virus immunizations still absolutely necessary.In comparison to current researches,a new virus immunization method the hierarchical virus immunization method(HVIM) for community networks is proposed.Based on the virus transmission dynamic model SusceptibleInfectious-Removed and SusceptibleRemoved(SIRSR),HVIM considered the influence of external factors on the spread of viruses and only needs a portion of the network structure to be able to carry out immunization.Another pro for HVIM is that it is scalable and suitable for parallel computing which is a requirement in the big data era.Finally,a simulation dataset and a real dataset were used to run experiments,and the results of simulation showed that HVIM obviously is superior to others on the aspect of immunity.展开更多
文摘基于轨道交通自动售检票系统(Automatic Fare Collection,AFC)统计获得的集计型客流数据,依据行为分析理论,提出1种适用于路网结构变化条件下的城轨站间客流量分布预测模型。首先,基于随机效用最大化理论,构建乘客目的地选择模型,选取终点站吸引客流量、列车运行时间、乘客在站换乘时间、乘客换乘次数、起终点站的线位关系和站点属性6个指标构建效用函数,以反映目的地吸引力、城轨服务水平、起终点站之间的线位匹配关系等对乘客目的地选择行为的影响,在此基础上,建立站间客流量分布预测模型;然后,利用代表个人法将AFC数据转化为非集计型数据,基于WESML(Weighted Exogenous Sampling Maximum Likelihood)估计方法,实现对目的地选择的非集计预测模型的参数标定。采用广州地铁6号线开通前后的AFC数据,对该预测模型的预测效果进行检验。结果表明:在新线接入导致地铁线网结构发生变化的条件下,全线网站间客流量分布预测的平均绝对误差仅为36人,因此该预测模型具有较高的预测精度。
基金supported by China 973 Program (2014CB340600)NSF(60903175,61272405, 61272033,and 61272451)University Innovation Foundation(2013TS102 and 2013TS106)
文摘Due to the enormous harm of virus propagation,research regarding virus immunizations still absolutely necessary.In comparison to current researches,a new virus immunization method the hierarchical virus immunization method(HVIM) for community networks is proposed.Based on the virus transmission dynamic model SusceptibleInfectious-Removed and SusceptibleRemoved(SIRSR),HVIM considered the influence of external factors on the spread of viruses and only needs a portion of the network structure to be able to carry out immunization.Another pro for HVIM is that it is scalable and suitable for parallel computing which is a requirement in the big data era.Finally,a simulation dataset and a real dataset were used to run experiments,and the results of simulation showed that HVIM obviously is superior to others on the aspect of immunity.