海上风电场将朝深远海、集群化方向发展,多端柔性直流输电技术(voltage source converter based multi-terminal direct current,VSC-MTDC)对远距离、大规模海上风电接入系统表现出明显优势,因此有必要对海上风电场集群VSC-MTDC组网优...海上风电场将朝深远海、集群化方向发展,多端柔性直流输电技术(voltage source converter based multi-terminal direct current,VSC-MTDC)对远距离、大规模海上风电接入系统表现出明显优势,因此有必要对海上风电场集群VSC-MTDC组网优化进行研究。考虑到风电场集群出力的聚集效应会影响电气设备的容量配置,以及陆上电网的公共连接点(point of common coupling,PCC)电压稳定性对大规模风电接入容量的影响。文中推导了PCC点电压稳定性指标,并引入了“N+”原则对电气设备进行容量配置,提出一种计及“N+”原则和PCC点电压稳定性的海上风电场集群VSC-MTDC组网优化方法。采用改进的NSGAⅡ算法对海上风电场集群VSC-MTDC系统进行分析。算例结果表明,按“N+”原则进行容量配置可以更好提高收益,考虑PCC点电压稳定性虽然会增加投资成本,但能够提高PCC点电压稳定性。展开更多
文摘海上风电场将朝深远海、集群化方向发展,多端柔性直流输电技术(voltage source converter based multi-terminal direct current,VSC-MTDC)对远距离、大规模海上风电接入系统表现出明显优势,因此有必要对海上风电场集群VSC-MTDC组网优化进行研究。考虑到风电场集群出力的聚集效应会影响电气设备的容量配置,以及陆上电网的公共连接点(point of common coupling,PCC)电压稳定性对大规模风电接入容量的影响。文中推导了PCC点电压稳定性指标,并引入了“N+”原则对电气设备进行容量配置,提出一种计及“N+”原则和PCC点电压稳定性的海上风电场集群VSC-MTDC组网优化方法。采用改进的NSGAⅡ算法对海上风电场集群VSC-MTDC系统进行分析。算例结果表明,按“N+”原则进行容量配置可以更好提高收益,考虑PCC点电压稳定性虽然会增加投资成本,但能够提高PCC点电压稳定性。