The GMS-5 infrared cloud imagery for two yearly first raining seasons in 1998 and 1999 are used to study the relationship between brightness temperature and surface rain rates. The result shows that it is likely to ha...The GMS-5 infrared cloud imagery for two yearly first raining seasons in 1998 and 1999 are used to study the relationship between brightness temperature and surface rain rates. The result shows that it is likely to have large probability of heavy precipitation with the decrease of brightness temperature and the gradual increase of rainfall intensity; for areas of low temperature, the brightness temperature is better determined for atmosphere above rain gauge stations with multiple points sampling than with single point one; for the yearly first raining season, the threshold brightness temperature is set at 4.6℃ for indication of heavy precipitation in the Fujian area.展开更多
Vertical raindrop size distributions of two stratiform rain events were measured with a Micro Rain Radar during summer 2009 at a semiarid continental site located in Xilinhot, China (43°38′N, 116°42′E). ...Vertical raindrop size distributions of two stratiform rain events were measured with a Micro Rain Radar during summer 2009 at a semiarid continental site located in Xilinhot, China (43°38′N, 116°42′E). The sequential intensity filtering technique (SIFT) was used to minimize the effect of the spurious variability on disdrometric data to obtain the reflectivity-rain rate (Z-R) relationship (Z = αRb). Compared with the least squares regression (LSR) method, SIFT led to a -5% to 4% change in the coefficient (a) and an 8%-1 5% increase in the exponent (b) of the Z-R relationship at 300 m. Rainfall estimation using the Z-R relationship with SIFT had lower standard deviation than that with LSR. The vertical variability of the mean rain rate, total raindrop numbers, and parameters (a and b) of the Z-R relationship was small below a melting layer, suggesting that using the radar reflectivity of weather radar to estimate stratiform rainfall is relatively accurate, at least in the Xilinhot area.展开更多
Airborne measurements were collected during a stepwise ascent within a nimbostratus cloud associated with a cold vortex depression over the Jilin Province on 21 June 2005 to study cloud structure and ice particle spec...Airborne measurements were collected during a stepwise ascent within a nimbostratus cloud associated with a cold vortex depression over the Jilin Province on 21 June 2005 to study cloud structure and ice particle spectra. The melting layer of the nimbostratus was clearly defined in the radar images. The microphysical structure of the nimbostratus was elucidated by a King liquid water probe and Particle Measuring Systems (PMS) probes aboard the research aircraft. The PMS 2-D images provided detailed information of ice crystal transformations. A thick layer of supercooled cloud was observed, and the high ice particle concentrations at temperatures ranging from -3℃ to -6℃ were consistent with Hallett-Mossop ice multiplication. The shape of ice crystals from near the cloud top to the melting layer were in the form of columns, needles, aggregations, and plates. In addition, significant horizontal variability was evident on the scale of few hundred meters. Particle spectra in this cloud were adequately described by exponential relationships. Relationship between the intercept (No) and slope (2) parameters of an exponential size distribution was well characterized by a power law.展开更多
基金Scientific Research project of Fujian Meteorological Bureau for 1998
文摘The GMS-5 infrared cloud imagery for two yearly first raining seasons in 1998 and 1999 are used to study the relationship between brightness temperature and surface rain rates. The result shows that it is likely to have large probability of heavy precipitation with the decrease of brightness temperature and the gradual increase of rainfall intensity; for areas of low temperature, the brightness temperature is better determined for atmosphere above rain gauge stations with multiple points sampling than with single point one; for the yearly first raining season, the threshold brightness temperature is set at 4.6℃ for indication of heavy precipitation in the Fujian area.
基金partially supported by the German Research Foundation[Research Unit 536,MAGIM]National Natural Science Foundation of China[grant number 41175105],[grant number41175122],[grant number 41505091],[grant number 41575124]
文摘Vertical raindrop size distributions of two stratiform rain events were measured with a Micro Rain Radar during summer 2009 at a semiarid continental site located in Xilinhot, China (43°38′N, 116°42′E). The sequential intensity filtering technique (SIFT) was used to minimize the effect of the spurious variability on disdrometric data to obtain the reflectivity-rain rate (Z-R) relationship (Z = αRb). Compared with the least squares regression (LSR) method, SIFT led to a -5% to 4% change in the coefficient (a) and an 8%-1 5% increase in the exponent (b) of the Z-R relationship at 300 m. Rainfall estimation using the Z-R relationship with SIFT had lower standard deviation than that with LSR. The vertical variability of the mean rain rate, total raindrop numbers, and parameters (a and b) of the Z-R relationship was small below a melting layer, suggesting that using the radar reflectivity of weather radar to estimate stratiform rainfall is relatively accurate, at least in the Xilinhot area.
基金supported by the National Natural Science Foundation of China (Grant No. 40805056)the National Key Technologies R&D Program of China (Grant No. 2006BAC12B00)
文摘Airborne measurements were collected during a stepwise ascent within a nimbostratus cloud associated with a cold vortex depression over the Jilin Province on 21 June 2005 to study cloud structure and ice particle spectra. The melting layer of the nimbostratus was clearly defined in the radar images. The microphysical structure of the nimbostratus was elucidated by a King liquid water probe and Particle Measuring Systems (PMS) probes aboard the research aircraft. The PMS 2-D images provided detailed information of ice crystal transformations. A thick layer of supercooled cloud was observed, and the high ice particle concentrations at temperatures ranging from -3℃ to -6℃ were consistent with Hallett-Mossop ice multiplication. The shape of ice crystals from near the cloud top to the melting layer were in the form of columns, needles, aggregations, and plates. In addition, significant horizontal variability was evident on the scale of few hundred meters. Particle spectra in this cloud were adequately described by exponential relationships. Relationship between the intercept (No) and slope (2) parameters of an exponential size distribution was well characterized by a power law.