当前,我国高速铁路客运车站钢结构雨棚螺栓缺失检测过于依赖人工目测,其危险系数大、成本高、效率低且误检率高。为解决该问题,提出一种基于YOLO(You Only Look Once)算法的螺栓缺失检测系统。该系统采用YOLOv4卷积神经网络,对现场采集...当前,我国高速铁路客运车站钢结构雨棚螺栓缺失检测过于依赖人工目测,其危险系数大、成本高、效率低且误检率高。为解决该问题,提出一种基于YOLO(You Only Look Once)算法的螺栓缺失检测系统。该系统采用YOLOv4卷积神经网络,对现场采集的钢结构雨棚和接触网螺栓进行标注,通过K-means聚类算法,确定锚框数目和尺寸;利用CutMix和Mosaic等数据增强操作,增加训练数据的多样性,避免出现训练过拟合。试验结果表明,该系统类别识别准确率可达85%以上,识别效果较好,满足检测实时性要求。展开更多
文摘当前,我国高速铁路客运车站钢结构雨棚螺栓缺失检测过于依赖人工目测,其危险系数大、成本高、效率低且误检率高。为解决该问题,提出一种基于YOLO(You Only Look Once)算法的螺栓缺失检测系统。该系统采用YOLOv4卷积神经网络,对现场采集的钢结构雨棚和接触网螺栓进行标注,通过K-means聚类算法,确定锚框数目和尺寸;利用CutMix和Mosaic等数据增强操作,增加训练数据的多样性,避免出现训练过拟合。试验结果表明,该系统类别识别准确率可达85%以上,识别效果较好,满足检测实时性要求。