A lightning warning system (LWS) which can predict the possibility of lightning strike and the position of lightning discharge was developed. The LWS uses the electric field intensity at the ground as a parameter to...A lightning warning system (LWS) which can predict the possibility of lightning strike and the position of lightning discharge was developed. The LWS uses the electric field intensity at the ground as a parameter to warn the possibility of lightning strikes. A planar shutter type electric field mill (EFM) with a rotating vane is studied to measure the electric field. From a calibration experiment, the sensitivity of the EFM was adjusted to 0.15 V/kV/m, and this covers the ranges from 200 V/m to 20 kV/m. Magnetic field waveform is detected by a crossed loop coil and an integral amplifier. Frequency bandwidth of the circuit ranges from 5 kHz to 1.2 MHz. The polarity of lightning discharges is discriminated by electric field component. After fixing the polarity, we can calculate the direction and distance of lightning discharge by the peak and the zero cross time of the detected magnetic field waveform.展开更多
文摘A lightning warning system (LWS) which can predict the possibility of lightning strike and the position of lightning discharge was developed. The LWS uses the electric field intensity at the ground as a parameter to warn the possibility of lightning strikes. A planar shutter type electric field mill (EFM) with a rotating vane is studied to measure the electric field. From a calibration experiment, the sensitivity of the EFM was adjusted to 0.15 V/kV/m, and this covers the ranges from 200 V/m to 20 kV/m. Magnetic field waveform is detected by a crossed loop coil and an integral amplifier. Frequency bandwidth of the circuit ranges from 5 kHz to 1.2 MHz. The polarity of lightning discharges is discriminated by electric field component. After fixing the polarity, we can calculate the direction and distance of lightning discharge by the peak and the zero cross time of the detected magnetic field waveform.