设 R 是一个中心为 C 并且特征不等于2的素环,d 是 R 的一个导子,N 是 R 的一个非零理想,令 P 为 R 的一个导子,N 是 R 的一个非零理想,令 P 为 R的特征,Z 表示整数环,H=Z 或 C。设 f(x,y)=a_1x^2+a_2y^2+a_3xy+a_4yx+a_5x+a_6y+a_7,其...设 R 是一个中心为 C 并且特征不等于2的素环,d 是 R 的一个导子,N 是 R 的一个非零理想,令 P 为 R 的一个导子,N 是 R 的一个非零理想,令 P 为 R的特征,Z 表示整数环,H=Z 或 C。设 f(x,y)=a_1x^2+a_2y^2+a_3xy+a_4yx+a_5x+a_6y+a_7,其中 a_1∈H。本文将证明下列结果:假设 R 至少存在一个非零导子 d_o,H=C(或 Z),那么 f(x,d(x))=0(x∈N)蕴含 d=0的充要条件为 a_1=a_7=0(或 p|a_1,p|a_7),a_2,a_3,a_4,a_5和 a_6不全为零(或 a_2,a_3,a_4,a_5和 a_6不全被 p 整除);并且当 R 是交换环时,如果 a_2=a_5=a_6=0(或 p|a_2,p|a_5,p|a_6),则 a_3+a_4≠0(或 pa_3+a_4)。展开更多
文摘讨论半素环上导子的幂零性质,利用相应的扩张技术证明了:(1)设R是n!-torsionfree半素环,n是自然数,Z是R的中心,δ是R上的导子,若δn(R)=0,则δ(Z)=0;(2)设R是特征不为2的素环,Z是R的中心,U1,U2,…,Un是R的Lie理想.若d1,d2,…,dn是R的非零导子,且[[…[d1(U1),d2(U2)],…],dn(Un)] Z,则存在i∈{1,2,…,n},使得Ui Z.
文摘设 R 是一个中心为 C 并且特征不等于2的素环,d 是 R 的一个导子,N 是 R 的一个非零理想,令 P 为 R 的一个导子,N 是 R 的一个非零理想,令 P 为 R的特征,Z 表示整数环,H=Z 或 C。设 f(x,y)=a_1x^2+a_2y^2+a_3xy+a_4yx+a_5x+a_6y+a_7,其中 a_1∈H。本文将证明下列结果:假设 R 至少存在一个非零导子 d_o,H=C(或 Z),那么 f(x,d(x))=0(x∈N)蕴含 d=0的充要条件为 a_1=a_7=0(或 p|a_1,p|a_7),a_2,a_3,a_4,a_5和 a_6不全为零(或 a_2,a_3,a_4,a_5和 a_6不全被 p 整除);并且当 R 是交换环时,如果 a_2=a_5=a_6=0(或 p|a_2,p|a_5,p|a_6),则 a_3+a_4≠0(或 pa_3+a_4)。