We study fermionic zero modes in the self-dual vortex background on an extra two-dimensional Riemann surface in (5+1) dimensions. Using the generalized Abelian-Higgs model, we obtain the inner topological structure...We study fermionic zero modes in the self-dual vortex background on an extra two-dimensional Riemann surface in (5+1) dimensions. Using the generalized Abelian-Higgs model, we obtain the inner topological structure of the self-dual vortex and establish the exact self-duality equation with topological term. Then we analyze the Dirac operator on an extra torus and the effective Lagrangian of four-dimensional fermions with the self-dual vortex background. Solving the Dirac equation, the fermionic zero modes on a torus with the self-dual vortex background in two simple cases are obtained.展开更多
基金This work is supported by National Science Foundation of PRC grant under 10 1710 5 5 and Nature Science Foundation of Shandong province granted under (Q98A0 8116 )
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10275030 and 10475034 and the Fundamental Research Fund for Physics and Mathematics of Lanzhou University (No. lzu0702)
文摘We study fermionic zero modes in the self-dual vortex background on an extra two-dimensional Riemann surface in (5+1) dimensions. Using the generalized Abelian-Higgs model, we obtain the inner topological structure of the self-dual vortex and establish the exact self-duality equation with topological term. Then we analyze the Dirac operator on an extra torus and the effective Lagrangian of four-dimensional fermions with the self-dual vortex background. Solving the Dirac equation, the fermionic zero modes on a torus with the self-dual vortex background in two simple cases are obtained.