不同用户接入终端的出现使得光接入系统中上行链路的通信带宽需求急剧增加,低传输成本、高频带利用率的上行多进制光信号接入成为必然选择。设计了一种上行八进制相移键控信号并进行零差相干探测的新方案。该方案中,在光网络单元中级联...不同用户接入终端的出现使得光接入系统中上行链路的通信带宽需求急剧增加,低传输成本、高频带利用率的上行多进制光信号接入成为必然选择。设计了一种上行八进制相移键控信号并进行零差相干探测的新方案。该方案中,在光网络单元中级联3个相位电光调制器实现了高频带利用率八进制相移键控光信号的产生,在光线路终端中采用下行光信号载波作为混频源结合数字信号处理模块,实现了上行光信号的零差相干探测,相比较只采用相干探测技术的方案其接收机灵敏度值的提高超过了2 d B。展开更多
We experimentally study optical homodyne and heterodyne detections with the same setup, which is flexible to manipulate the signal sideband modulation. When the modulation only generates a single signal sideband, the ...We experimentally study optical homodyne and heterodyne detections with the same setup, which is flexible to manipulate the signal sideband modulation. When the modulation only generates a single signal sideband, the light field measurement by mixing the single sideband at ω0 ±? with a strong local oscillator at the carrier frequency ω0on a beam splitter becomes balanced heterodyne detection. When two signal sidebands at ω0 ±? are generated and the relative phase of the two sidebands is locked, this measurement corresponds to optical balanced homodyne detection. With this setup, we may confirm directly that the signal-to-noise ratio with heterodyne detection is two-fold worse than that with homodyne detection. This work will have important applications in quantum state measurement and quantum information.展开更多
文摘不同用户接入终端的出现使得光接入系统中上行链路的通信带宽需求急剧增加,低传输成本、高频带利用率的上行多进制光信号接入成为必然选择。设计了一种上行八进制相移键控信号并进行零差相干探测的新方案。该方案中,在光网络单元中级联3个相位电光调制器实现了高频带利用率八进制相移键控光信号的产生,在光线路终端中采用下行光信号载波作为混频源结合数字信号处理模块,实现了上行光信号的零差相干探测,相比较只采用相干探测技术的方案其接收机灵敏度值的提高超过了2 d B。
基金supported by the National Basic Research Program of China(Grant No.2011CB921601)the National Natural Science Foundation of China(Grant Nos.10725416 and 60821004)
文摘We experimentally study optical homodyne and heterodyne detections with the same setup, which is flexible to manipulate the signal sideband modulation. When the modulation only generates a single signal sideband, the light field measurement by mixing the single sideband at ω0 ±? with a strong local oscillator at the carrier frequency ω0on a beam splitter becomes balanced heterodyne detection. When two signal sidebands at ω0 ±? are generated and the relative phase of the two sidebands is locked, this measurement corresponds to optical balanced homodyne detection. With this setup, we may confirm directly that the signal-to-noise ratio with heterodyne detection is two-fold worse than that with homodyne detection. This work will have important applications in quantum state measurement and quantum information.