期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
非零方阵的一类加法分解
1
作者 崔建 《大学数学》 2024年第2期100-105,共6页
基于矩阵的相关性质,证明了数域上任意非零方阵均可分解为一个幂零阵与一个可逆阵之和,推进了已知相关结论.作为所得结果的应用,给出线性空间上线性变换的加法分解.
关键词 零方阵 可逆阵 fine分解
下载PDF
差值互补原理
2
作者 沈锡南 高治源 《延安职业技术学院学报》 1997年第S1期40-42,共3页
本文介绍了分析幻方组合结构的差值互补原理,揭示了使幻方内各线数字之和等值的差值关系与互补关系.
关键词 偶值单元 组合结构 互补原理 互补关系 编制原理 九宫图 四阶幻方 n阶幻方 零方阵 补数
下载PDF
连通简单图的典型着色
3
作者 李焕银 《宜宾学院学报》 1996年第2期31-33,共3页
本文用图论知识利用连通简单图G的邻接矩阵来寻求其互不相交的极大独立集的方法,解决连通简单图G的典型着色问题.
关键词 极大独立集 零方阵 连通简单图
下载PDF
每个非空正则简单图都包含两个不相交的极大独立集
4
作者 李焕银 《宜宾学院学报》 1999年第2期19-23,共5页
以极大独立集定义为基础,从连通简单图的邻接矩阵入手,寻求邻接矩阵的极高阶零子方阵,以极高阶零子方阵确定极大独立集。
关键词 正则图 极高阶方阵.极大独立集、不相交
下载PDF
Integrable Properties Associated with a Discrete Three-by-Three Matrix Spectral Problem
5
作者 LI Xin-Yue WANG Xin-Zeng 《Communications in Theoretical Physics》 SCIE CAS CSCD 2009年第12期981-986,共6页
Based on a new discrete three-by-three matrix spectral problem, a hierarchy of integrable lattice equations with three potentials is proposed through discrete zero-curvature representation, and the resulting integrabl... Based on a new discrete three-by-three matrix spectral problem, a hierarchy of integrable lattice equations with three potentials is proposed through discrete zero-curvature representation, and the resulting integrable lattice equation reduces to the classical Toda lattice equation. It is shown that the hierarchy possesses a HamiItonian structure and a hereditary recursion operator. Finally, infinitely many conservation laws of corresponding lattice systems are obtained by a direct way. 展开更多
关键词 discrete Hamiltonian structure discrete zero-curvature representation conservation laws
下载PDF
Loop Algebras and Bi-integrable Couplings 被引量:4
6
作者 Wenxiu MA 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2012年第2期207-224,共18页
A class of non-semisimple matrix loop algebras consisting of triangular block matrices is introduced and used to generate bi-integrable couplings of soliton equations from zero curvature equations.The variational iden... A class of non-semisimple matrix loop algebras consisting of triangular block matrices is introduced and used to generate bi-integrable couplings of soliton equations from zero curvature equations.The variational identities under non-degenerate,symmetric and ad-invariant bilinear forms are used to furnish Hamiltonian structures of the resulting bi-integrable couplings.A special case of the suggested loop algebras yields nonlinear bi-integrable Hamiltonian couplings for the AKNS soliton hierarchy. 展开更多
关键词 Loop algebra Bi-integrable coupling Zero curvature equation SYMMETRY Hamiltonian structure
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部