针对现有MEMS零位随机漂移的缺陷,本文建立关于温度约束的确定性模型MEMS陀螺零位漂移补偿模型。首先,依据MEMS陀螺信号的测量模型,将陀螺信号误差分解为确定性误差和随机性误差,针对由温度引入的确定性误差,建立温度-零偏和温度-主频...针对现有MEMS零位随机漂移的缺陷,本文建立关于温度约束的确定性模型MEMS陀螺零位漂移补偿模型。首先,依据MEMS陀螺信号的测量模型,将陀螺信号误差分解为确定性误差和随机性误差,针对由温度引入的确定性误差,建立温度-零偏和温度-主频率分量确定性约束模型,有效消除信号序列中的温度引入趋势项和辨识周期项;其次,利用自回归滑动平均模型(Auto-Regressive and Moving Average Model,简称为ARMA模型)逼近MEMS陀螺信号中的随机误差项,准确地预测出随机误差的变化趋势;最后,采用Kalman滤波优化ARMA模型的预测效果,进一步提高模型的状态估计精度。理论分析和实验结果验证了该模型的鲁棒性和有效性。展开更多
文摘针对现有MEMS零位随机漂移的缺陷,本文建立关于温度约束的确定性模型MEMS陀螺零位漂移补偿模型。首先,依据MEMS陀螺信号的测量模型,将陀螺信号误差分解为确定性误差和随机性误差,针对由温度引入的确定性误差,建立温度-零偏和温度-主频率分量确定性约束模型,有效消除信号序列中的温度引入趋势项和辨识周期项;其次,利用自回归滑动平均模型(Auto-Regressive and Moving Average Model,简称为ARMA模型)逼近MEMS陀螺信号中的随机误差项,准确地预测出随机误差的变化趋势;最后,采用Kalman滤波优化ARMA模型的预测效果,进一步提高模型的状态估计精度。理论分析和实验结果验证了该模型的鲁棒性和有效性。