基于单周控制技术,设计出单相有源功率因数校正(Active Power Factor Correction,简称APFC)装置;采用电压、电流双闭环反馈控制,实现了变换电路的高功率因数;采用零电压过渡技术,实现了开关管的零电压开通和升压二极管的零电流关断,提...基于单周控制技术,设计出单相有源功率因数校正(Active Power Factor Correction,简称APFC)装置;采用电压、电流双闭环反馈控制,实现了变换电路的高功率因数;采用零电压过渡技术,实现了开关管的零电压开通和升压二极管的零电流关断,提高了效率,降低了器件的开关应力,使整个电路结构简单高效。给出了电路的详细设计方法,实验结果表明,该装置具有抗干扰性强,开关损耗小,可靠性好等特点。展开更多
The application areas of conventional push pull converters are limited because of high voltage stress of switches (twice of input voltage). This paper presents a novel zero voltage and zero current switching (ZCS)...The application areas of conventional push pull converters are limited because of high voltage stress of switches (twice of input voltage). This paper presents a novel zero voltage and zero current switching (ZCS) PWM push pull three level converter in which the voltage stress of switches is input voltage. With phase shifted modulation strategy, the leading switches can only realize zero voltage switching (ZVS), and the lagging switches can realize ZCS when block capacitor and block diodes are added. Using the strategy, the converter overcomes the drawbacks presented by the conventional push pull converter, such as magnetic aberration, large switch loss, and voltage spike on switches, so it can get higher efficiency, and a wider application area. The operating principle of the new converter is analyzed and verified on a 600 W, 50 kHz experimental prototype. Several zero voltage and zero current switching PWM push pull three level converters are proposed.展开更多
文摘基于单周控制技术,设计出单相有源功率因数校正(Active Power Factor Correction,简称APFC)装置;采用电压、电流双闭环反馈控制,实现了变换电路的高功率因数;采用零电压过渡技术,实现了开关管的零电压开通和升压二极管的零电流关断,提高了效率,降低了器件的开关应力,使整个电路结构简单高效。给出了电路的详细设计方法,实验结果表明,该装置具有抗干扰性强,开关损耗小,可靠性好等特点。
文摘The application areas of conventional push pull converters are limited because of high voltage stress of switches (twice of input voltage). This paper presents a novel zero voltage and zero current switching (ZCS) PWM push pull three level converter in which the voltage stress of switches is input voltage. With phase shifted modulation strategy, the leading switches can only realize zero voltage switching (ZVS), and the lagging switches can realize ZCS when block capacitor and block diodes are added. Using the strategy, the converter overcomes the drawbacks presented by the conventional push pull converter, such as magnetic aberration, large switch loss, and voltage spike on switches, so it can get higher efficiency, and a wider application area. The operating principle of the new converter is analyzed and verified on a 600 W, 50 kHz experimental prototype. Several zero voltage and zero current switching PWM push pull three level converters are proposed.