This paper gives and proofs a theorem, for any matrix A, do elementary column operations, change it to a matrix which is partitioned to two blocks which left one is column full rank and right one is zero matrix. That ...This paper gives and proofs a theorem, for any matrix A, do elementary column operations, change it to a matrix which is partitioned to two blocks which left one is column full rank and right one is zero matrix. That is, use a invertible matrix P to let AP = (B,O), O is zero matrix with n-r columns, r and n is rank and column number of A, so the P's right n-r columns is just the basis of the null space of the matrix A. On the basis of the theorem, lots of problems of linear algebra can be resolved and lots of theorems can be proofed by elementary column operations. Perhaps the textbooks used in universities will have a lot of change with the result of the paper. This result is first found by author in 2010.12.8 in http://www.paper.edu.cn/index.php/default/releasepaper/content/201012-232, but is not formal published.展开更多
文摘This paper gives and proofs a theorem, for any matrix A, do elementary column operations, change it to a matrix which is partitioned to two blocks which left one is column full rank and right one is zero matrix. That is, use a invertible matrix P to let AP = (B,O), O is zero matrix with n-r columns, r and n is rank and column number of A, so the P's right n-r columns is just the basis of the null space of the matrix A. On the basis of the theorem, lots of problems of linear algebra can be resolved and lots of theorems can be proofed by elementary column operations. Perhaps the textbooks used in universities will have a lot of change with the result of the paper. This result is first found by author in 2010.12.8 in http://www.paper.edu.cn/index.php/default/releasepaper/content/201012-232, but is not formal published.