Under the inflammable or explosive environment, the direct measurement methods by opening up the explo- sion-proof shell of electrical installations were not adopted. So, it's impossible to have a quantitative analys...Under the inflammable or explosive environment, the direct measurement methods by opening up the explo- sion-proof shell of electrical installations were not adopted. So, it's impossible to have a quantitative analysis on the limit of conducted disturbance for electrical fast transient burst (EFT/B) in such dangerous environments. Transient conducted coupling model, which using EFT/B as its excitation source, can be built based on circuit and electromagnetic field theory. Furthermore, numerical analysis was performed. The results indicate that the capacitive coupling voltage is the same polarity as EFT/B, and is the main disturbance form of conducted coupling in mines. The inductive coupling voltage is reversed polarity with the ca- pacitive coupling voltage, and both peaks appear only in the rising time of EFT/B, which increase with the rising of load resistance. Moreover, the cable coupling voltage on the side of disturbance source is higher than the one on the other side in tunnel. To reduce the common resistance can suppress the resistive coupling disturbance.展开更多
In this paper, an optimized transmission line model (OTL) for modeling transient behavior of grounding electrodes under lightning currents is presented. The soil ionization effect is considered in OTL, and all elect...In this paper, an optimized transmission line model (OTL) for modeling transient behavior of grounding electrodes under lightning currents is presented. The soil ionization effect is considered in OTL, and all electromagnetic couplings between dif- ferent parts of grounding electrode are also considered by selecting the size of segment conductor properly and calculating the mutual coupling parameters between segment conductors accurately. Comparing with the traditional transmission line model, the optimized model can be used to accurately predict the effective length and transient potential rise (TPR) of grounding elec- trodes. Transient behaviors of grounding electrodes are simulated by OTL and the results are in good agreement with those of the electromagnetic model proposed by Grcev, and experiment results performed by Electricit6 de France and Geri. Further- more, non-uniform discharging phenomenon of grounding electrode under lightning current is discussed, and the effective lengths of horizontal grounding electrode under lightning currents are presented.展开更多
基金Supported by the National Natural Science Foundation of China (50674093) the Project of Fujian Provincial Education Department (JA11098)
文摘Under the inflammable or explosive environment, the direct measurement methods by opening up the explo- sion-proof shell of electrical installations were not adopted. So, it's impossible to have a quantitative analysis on the limit of conducted disturbance for electrical fast transient burst (EFT/B) in such dangerous environments. Transient conducted coupling model, which using EFT/B as its excitation source, can be built based on circuit and electromagnetic field theory. Furthermore, numerical analysis was performed. The results indicate that the capacitive coupling voltage is the same polarity as EFT/B, and is the main disturbance form of conducted coupling in mines. The inductive coupling voltage is reversed polarity with the ca- pacitive coupling voltage, and both peaks appear only in the rising time of EFT/B, which increase with the rising of load resistance. Moreover, the cable coupling voltage on the side of disturbance source is higher than the one on the other side in tunnel. To reduce the common resistance can suppress the resistive coupling disturbance.
文摘In this paper, an optimized transmission line model (OTL) for modeling transient behavior of grounding electrodes under lightning currents is presented. The soil ionization effect is considered in OTL, and all electromagnetic couplings between dif- ferent parts of grounding electrode are also considered by selecting the size of segment conductor properly and calculating the mutual coupling parameters between segment conductors accurately. Comparing with the traditional transmission line model, the optimized model can be used to accurately predict the effective length and transient potential rise (TPR) of grounding elec- trodes. Transient behaviors of grounding electrodes are simulated by OTL and the results are in good agreement with those of the electromagnetic model proposed by Grcev, and experiment results performed by Electricit6 de France and Geri. Further- more, non-uniform discharging phenomenon of grounding electrode under lightning current is discussed, and the effective lengths of horizontal grounding electrode under lightning currents are presented.