An improved finite difference method (FDM)is described to solve existing problems such as low efficiency and poor convergence performance in the traditional method adopted to derive the pressure distribution of aero...An improved finite difference method (FDM)is described to solve existing problems such as low efficiency and poor convergence performance in the traditional method adopted to derive the pressure distribution of aerostatic bearings. A detailed theoretical analysis of the pressure distribution of the orifice-compensated aerostatic journal bearing is presented. The nonlinear dimensionless Reynolds equation of the aerostatic journal bearing is solved by the finite difference method. Based on the principle of flow equilibrium, a new iterative algorithm named the variable step size successive approximation method is presented to adjust the pressure at the orifice in the iterative process and enhance the efficiency and convergence performance of the algorithm. A general program is developed to analyze the pressure distribution of the aerostatic journal bearing by Matlab tool. The results show that the improved finite difference method is highly effective, reliable, stable, and convergent. Even when very thin gas film thicknesses (less than 2 Win)are considered, the improved calculation method still yields a result and converges fast.展开更多
Using 19-year satellite altimetric data, variations in the eddy kinetic energy, energy exchanges and interaction between the eddy fi eld and mean fl ow are discussed for the Kuroshio south of Japan. In the seasonal cy...Using 19-year satellite altimetric data, variations in the eddy kinetic energy, energy exchanges and interaction between the eddy fi eld and mean fl ow are discussed for the Kuroshio south of Japan. In the seasonal cycle, the eddy kinetic energy level is a minimum in December/January and a maximum in April/May. In addition to seasonal variations, the eddy kinetic energy undergoes interannual changes. The energy transfers mainly from the mean fl ow to the eddy fi eld in the Kuroshio south of Japan, and dominant energy exchanges mainly occur along the Kuroshio path south of Japan in each year from 1993 to 2011. In addition, there is often barotropic instability south of Honshu. Regarding interactions between the eddy fi eld and mean fl ow, cyclonic and anticyclonic accelerations are also found along the Kuroshio path and they fl ank each other. There is cyclonic acceleration always imposed on southeast of Kyushu, and anticyclonic acceleration dominates south of Honshu from 2001 to mid-2005. Reynolds stress is used to explain the dynamic process of energy exchange. Furthermore, lag-correlation and linear regression analysis show that variability of the energy conversion rate and Reynolds stress involve responses to eddy acceleration at two time scales. The enhanced eddy acceleration induces large Reynolds stress, and enhanced Reynolds stress or barotropic instability further enforces energy transfer from the mean fl ow to the eddy fi eld.展开更多
The control of energy in various industrial applications passes by the comprehension of the phenomena of transfers especially in complex flows. The structure of the turbulent flow in the cavities in rotation depends o...The control of energy in various industrial applications passes by the comprehension of the phenomena of transfers especially in complex flows. The structure of the turbulent flow in the cavities in rotation depends on several parameters like the Reynolds number of rotation Ra and the aspect ratio of the cavity. The purpose of this work is to simulate numerically the effect of the aspect ratio on the level of turbulence in the annular steady flow with an incompressible fluid for three different configurations. In the first, the interior cylinder is fixed and the external is moving. The second configuration is the reverse. The third is the contra-rotating cylinders. For all these configurations, we varied the aspect ratio from 0.5 to 2.5. The numerical tool is based on a statistical model in a point using the closing of the second order of the transport equations of the Reynolds stresses (Reynolds Stress Model: RSM). The results of our numerical simulation show that this geometrical parameter can be an interesting factor to increase the level of turbulence that is often required in several industrial applications where the economy and the control of energy are always required.展开更多
The occurrence of a PTS (pressurized thermal shock) in a reactor vessel is an important phenomenon for assessing nuclear reactor safety. New experiment was conducted at HZDR (Helmholtz-Zentrum Dresden-Rossendorf),...The occurrence of a PTS (pressurized thermal shock) in a reactor vessel is an important phenomenon for assessing nuclear reactor safety. New experiment was conducted at HZDR (Helmholtz-Zentrum Dresden-Rossendorf), focused on thermal mixing processes in the cold leg and the downcomer of two-phase PTS case. Present work reports CFD (computational fluid dynamics) ana|ysis of steady-state air-water case. CFD analysis was conducted with two turbulence-modeling approaches, RANS (Reynolds Averaged Navier-stokes) and LES (large eddy simulations). Multiphase situation was modeled with VOF (volume of fluid) approach. Simulations were performed using the FLUENT 12 package. Comparison of computed temperatures results and measurements along the thermo-couple lines revealed results depend on the turbulence model used.展开更多
Given the definition of the reference Knudsen number for micro gas journal bearings,the range in the number is related to the viscosity of air at different temperatures. A modified Reynolds equation for micro gas jour...Given the definition of the reference Knudsen number for micro gas journal bearings,the range in the number is related to the viscosity of air at different temperatures. A modified Reynolds equation for micro gas journal bearings based on Burgdorfer's first-order slip boundary condition is proposed that takes into account the gas rarefaction effect. The finite difference method (FDM) is adopted to solve the modified Reynolds equation to obtain the pressure profiles,load capacities and attitude angles for micro gas journal bearings at different reference Knudsen numbers,bearing numbers and journal eccentricity ratios. Numerical analysis shows that pressure profiles and non-dimensional load capacities decrease markedly as gas rarefaction in-creases. Attitude angles change conversely,and when the eccentricity ratio is less than 0.6,the attitude angles rise slightly and the influence of the reference Knudsen number is not marked. In addition,the effect of gas rarefaction on the non-dimensional load capacity and attitude angle decreases with smaller bearing numbers.展开更多
The large-eddy simulation(LES)with the dynamic Smagorinsky model is used to predict the interior sound of an idealized vehicle cabin under the excitation of the wall pressures from turbulent channel flows.In compariso...The large-eddy simulation(LES)with the dynamic Smagorinsky model is used to predict the interior sound of an idealized vehicle cabin under the excitation of the wall pressures from turbulent channel flows.In comparison with direct numerical simulation(DNS),the LES results overpredict the sound pressure level(SPL)at low frequencies and underpredict the SPL at high frequencies.The incorrect predictions result from the incorrect prediction of LES on surface pressures,where the LES over-estimates the wavenumber and frequencies spectra of surface pressures at small wavenumbers and frequencies and under-estimates the spectra at large wavenumbers and frequencies.However,the LES results are close to the filtered-DNS results,implying that the unresolved scales are also important to surface pressures and interior sound.The Euler-Bernoulli beam under the excitation of exterior pressures,which serves as a simple model for aero-vibro-acoustics in the case of hydrodynamical fast,is used to explain the observed predictions and show that the Corcos model cannot represent the variation of turbulence pressure spectra at wavenumbers and frequencies.Therefore,the new requirement for the LES method,when applied to fluid-structural-acoustic interaction problems at high Reynolds numbers,is the correct prediction of wavenumber and frequency spectra of turbulence wall pressure.展开更多
The effects of Reynolds number on the performance of a high pressure-ratio turbocharger compressor were investigated by both experiments and numerical simulation. The experimental results show that the pressure ratio ...The effects of Reynolds number on the performance of a high pressure-ratio turbocharger compressor were investigated by both experiments and numerical simulation. The experimental results show that the pressure ratio and the efficiency of the compressor respectively decrease by 7.9% and 6.9% when Reynolds number drops from 9.86×10 5 to 2.96×10 5 . The numerical simulation predicts a similar trend as the experimental results although it underestimates the deterioration of the performance under low Reynolds number conditions. According to simulation results, the boundary layer thickness increases at the inducer, which decreases the throat area and leads to smaller choke mass flow rate. The increments of the boundary thickness are relatively small at the rear part of the impeller. The boundary layer separation flow is severe. The interaction between boundary layer separation flows and leakage flows causes the high loss region at the rear part of the impeller passage under low Reynolds number condition.展开更多
A challenge in the study of turbulent boundary layers(TBLs) is to understand the non-equilibrium relaxation process after separation and reattachment due to shock-wave/boundary-layer interaction. The classical boundar...A challenge in the study of turbulent boundary layers(TBLs) is to understand the non-equilibrium relaxation process after separation and reattachment due to shock-wave/boundary-layer interaction. The classical boundary layer theory cannot deal with the strong adverse pressure gradient, and hence, the computational modeling of this process remains inaccurate. Here, we report the direct numerical simulation results of the relaxation TBL behind a compression ramp, which reveal the presence of intense large-scale eddies, with significantly enhanced Reynolds stress and turbulent heat flux. A crucial finding is that the wall-normal profiles of the excess Reynolds stress and turbulent heat flux obey a β-distribution, which is a product of two power laws with respect to the wall-normal distances from the wall and from the boundary layer edge. In addition, the streamwise decays of the excess Reynolds stress and turbulent heat flux also exhibit power laws with respect to the streamwise distance from the corner of the compression ramp. These results suggest that the relaxation TBL obeys the dilation symmetry, which is a specific form of self-organization in this complex non-equilibrium flow. The β-distribution yields important hints for the development of a turbulence model.展开更多
基金National Basic Research Program of China(Grant NO.2009CB724100)National Natural Science Foundation of China(Grant NO.11172326)+1 种基金Innovation Fund Program for Outstanding Postgraduate Students of NUDT(Grant NO.B120103)Hunan Provincial Innovation Foundation for Postgraduate(CX2012B002)
基金The National Natural Science Foundation of China(No50475073,50775036)the High Technology Research Program of Jiangsu Province(NoBG2006035)
文摘An improved finite difference method (FDM)is described to solve existing problems such as low efficiency and poor convergence performance in the traditional method adopted to derive the pressure distribution of aerostatic bearings. A detailed theoretical analysis of the pressure distribution of the orifice-compensated aerostatic journal bearing is presented. The nonlinear dimensionless Reynolds equation of the aerostatic journal bearing is solved by the finite difference method. Based on the principle of flow equilibrium, a new iterative algorithm named the variable step size successive approximation method is presented to adjust the pressure at the orifice in the iterative process and enhance the efficiency and convergence performance of the algorithm. A general program is developed to analyze the pressure distribution of the aerostatic journal bearing by Matlab tool. The results show that the improved finite difference method is highly effective, reliable, stable, and convergent. Even when very thin gas film thicknesses (less than 2 Win)are considered, the improved calculation method still yields a result and converges fast.
基金Supported by the Knowledge Innovation Program of Chinese Academy of Sciences(No.KZCX2-EW-201)the Basic Research Program of Science and Technology Projects of Qingdao(No.11-1-4-95-jch)
文摘Using 19-year satellite altimetric data, variations in the eddy kinetic energy, energy exchanges and interaction between the eddy fi eld and mean fl ow are discussed for the Kuroshio south of Japan. In the seasonal cycle, the eddy kinetic energy level is a minimum in December/January and a maximum in April/May. In addition to seasonal variations, the eddy kinetic energy undergoes interannual changes. The energy transfers mainly from the mean fl ow to the eddy fi eld in the Kuroshio south of Japan, and dominant energy exchanges mainly occur along the Kuroshio path south of Japan in each year from 1993 to 2011. In addition, there is often barotropic instability south of Honshu. Regarding interactions between the eddy fi eld and mean fl ow, cyclonic and anticyclonic accelerations are also found along the Kuroshio path and they fl ank each other. There is cyclonic acceleration always imposed on southeast of Kyushu, and anticyclonic acceleration dominates south of Honshu from 2001 to mid-2005. Reynolds stress is used to explain the dynamic process of energy exchange. Furthermore, lag-correlation and linear regression analysis show that variability of the energy conversion rate and Reynolds stress involve responses to eddy acceleration at two time scales. The enhanced eddy acceleration induces large Reynolds stress, and enhanced Reynolds stress or barotropic instability further enforces energy transfer from the mean fl ow to the eddy fi eld.
文摘The control of energy in various industrial applications passes by the comprehension of the phenomena of transfers especially in complex flows. The structure of the turbulent flow in the cavities in rotation depends on several parameters like the Reynolds number of rotation Ra and the aspect ratio of the cavity. The purpose of this work is to simulate numerically the effect of the aspect ratio on the level of turbulence in the annular steady flow with an incompressible fluid for three different configurations. In the first, the interior cylinder is fixed and the external is moving. The second configuration is the reverse. The third is the contra-rotating cylinders. For all these configurations, we varied the aspect ratio from 0.5 to 2.5. The numerical tool is based on a statistical model in a point using the closing of the second order of the transport equations of the Reynolds stresses (Reynolds Stress Model: RSM). The results of our numerical simulation show that this geometrical parameter can be an interesting factor to increase the level of turbulence that is often required in several industrial applications where the economy and the control of energy are always required.
文摘The occurrence of a PTS (pressurized thermal shock) in a reactor vessel is an important phenomenon for assessing nuclear reactor safety. New experiment was conducted at HZDR (Helmholtz-Zentrum Dresden-Rossendorf), focused on thermal mixing processes in the cold leg and the downcomer of two-phase PTS case. Present work reports CFD (computational fluid dynamics) ana|ysis of steady-state air-water case. CFD analysis was conducted with two turbulence-modeling approaches, RANS (Reynolds Averaged Navier-stokes) and LES (large eddy simulations). Multiphase situation was modeled with VOF (volume of fluid) approach. Simulations were performed using the FLUENT 12 package. Comparison of computed temperatures results and measurements along the thermo-couple lines revealed results depend on the turbulence model used.
基金supported by the National Natural Science Foundation of China (No. 10472101)the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20070335184)
文摘Given the definition of the reference Knudsen number for micro gas journal bearings,the range in the number is related to the viscosity of air at different temperatures. A modified Reynolds equation for micro gas journal bearings based on Burgdorfer's first-order slip boundary condition is proposed that takes into account the gas rarefaction effect. The finite difference method (FDM) is adopted to solve the modified Reynolds equation to obtain the pressure profiles,load capacities and attitude angles for micro gas journal bearings at different reference Knudsen numbers,bearing numbers and journal eccentricity ratios. Numerical analysis shows that pressure profiles and non-dimensional load capacities decrease markedly as gas rarefaction in-creases. Attitude angles change conversely,and when the eccentricity ratio is less than 0.6,the attitude angles rise slightly and the influence of the reference Knudsen number is not marked. In addition,the effect of gas rarefaction on the non-dimensional load capacity and attitude angle decreases with smaller bearing numbers.
基金Basic Science Center Program of the National Natural Science Foundation of China for“Multi-scale Problems in Nonlinear Mechanics”(Grant No.11988102)National Key Project(Grant No.GJXM92579).
文摘The large-eddy simulation(LES)with the dynamic Smagorinsky model is used to predict the interior sound of an idealized vehicle cabin under the excitation of the wall pressures from turbulent channel flows.In comparison with direct numerical simulation(DNS),the LES results overpredict the sound pressure level(SPL)at low frequencies and underpredict the SPL at high frequencies.The incorrect predictions result from the incorrect prediction of LES on surface pressures,where the LES over-estimates the wavenumber and frequencies spectra of surface pressures at small wavenumbers and frequencies and under-estimates the spectra at large wavenumbers and frequencies.However,the LES results are close to the filtered-DNS results,implying that the unresolved scales are also important to surface pressures and interior sound.The Euler-Bernoulli beam under the excitation of exterior pressures,which serves as a simple model for aero-vibro-acoustics in the case of hydrodynamical fast,is used to explain the observed predictions and show that the Corcos model cannot represent the variation of turbulence pressure spectra at wavenumbers and frequencies.Therefore,the new requirement for the LES method,when applied to fluid-structural-acoustic interaction problems at high Reynolds numbers,is the correct prediction of wavenumber and frequency spectra of turbulence wall pressure.
基金supported by the National Natural Science Foundation of China (Grant No. 51176087)
文摘The effects of Reynolds number on the performance of a high pressure-ratio turbocharger compressor were investigated by both experiments and numerical simulation. The experimental results show that the pressure ratio and the efficiency of the compressor respectively decrease by 7.9% and 6.9% when Reynolds number drops from 9.86×10 5 to 2.96×10 5 . The numerical simulation predicts a similar trend as the experimental results although it underestimates the deterioration of the performance under low Reynolds number conditions. According to simulation results, the boundary layer thickness increases at the inducer, which decreases the throat area and leads to smaller choke mass flow rate. The increments of the boundary thickness are relatively small at the rear part of the impeller. The boundary layer separation flow is severe. The interaction between boundary layer separation flows and leakage flows causes the high loss region at the rear part of the impeller passage under low Reynolds number condition.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11452002, 11372008, and 11521091)the Aeronautical Science Foundation of China (Grant No. 2014ZA71001)
文摘A challenge in the study of turbulent boundary layers(TBLs) is to understand the non-equilibrium relaxation process after separation and reattachment due to shock-wave/boundary-layer interaction. The classical boundary layer theory cannot deal with the strong adverse pressure gradient, and hence, the computational modeling of this process remains inaccurate. Here, we report the direct numerical simulation results of the relaxation TBL behind a compression ramp, which reveal the presence of intense large-scale eddies, with significantly enhanced Reynolds stress and turbulent heat flux. A crucial finding is that the wall-normal profiles of the excess Reynolds stress and turbulent heat flux obey a β-distribution, which is a product of two power laws with respect to the wall-normal distances from the wall and from the boundary layer edge. In addition, the streamwise decays of the excess Reynolds stress and turbulent heat flux also exhibit power laws with respect to the streamwise distance from the corner of the compression ramp. These results suggest that the relaxation TBL obeys the dilation symmetry, which is a specific form of self-organization in this complex non-equilibrium flow. The β-distribution yields important hints for the development of a turbulence model.