期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
NPLS技术及其在高速飞行器气动研究中的应用(英文) 被引量:3
1
作者 易仕和 陈植 +2 位作者 何霖 武宇 田立丰 《实验流体力学》 CAS CSCD 北大核心 2014年第1期1-11,共11页
近年来,与高速飞行器相关的超声速/高超声速流动受到了极大关注。这类流动所具有的非定常性、强梯度和可压缩性对试验研究提出了挑战。纳米示踪的平面激光散射技术(NPLS)是2005年由作者所在的研究团队研发的非接触光学测试技术。它能够... 近年来,与高速飞行器相关的超声速/高超声速流动受到了极大关注。这类流动所具有的非定常性、强梯度和可压缩性对试验研究提出了挑战。纳米示踪的平面激光散射技术(NPLS)是2005年由作者所在的研究团队研发的非接触光学测试技术。它能够获得超声速三维流场的某个剖面的瞬态流动结构,并且具有较高的时空分辨率。目前,许多研究结果表明NPLS是研究超声速湍流的一项非常有效的技术。近年来,作者应用NPLS技术在超声速湍流研究中取得了较大的进展,并且基于NPLS开发了其它几种技术,比如基于NPLS的密度场测量技术(NPLS-DT),能够获得超声速流动的密度场信息并还能进一步得到雷诺应力分布。本文介绍了NPLS技术并回顾了其在超声速边界层、激波/边界层相互作用等流动中的应用。由于能够获得雷诺压力和湍动能等统计量,NPLS技术有望在发展可压缩湍流模型的研究中发挥作用。 展开更多
关键词 NPLS 超声速湍流 精细结构 密度场测量 雷诺压力
下载PDF
Improved finite difference method for pressure distribution of aerostatic bearing 被引量:4
2
作者 郑书飞 蒋书运 《Journal of Southeast University(English Edition)》 EI CAS 2009年第4期501-505,共5页
An improved finite difference method (FDM)is described to solve existing problems such as low efficiency and poor convergence performance in the traditional method adopted to derive the pressure distribution of aero... An improved finite difference method (FDM)is described to solve existing problems such as low efficiency and poor convergence performance in the traditional method adopted to derive the pressure distribution of aerostatic bearings. A detailed theoretical analysis of the pressure distribution of the orifice-compensated aerostatic journal bearing is presented. The nonlinear dimensionless Reynolds equation of the aerostatic journal bearing is solved by the finite difference method. Based on the principle of flow equilibrium, a new iterative algorithm named the variable step size successive approximation method is presented to adjust the pressure at the orifice in the iterative process and enhance the efficiency and convergence performance of the algorithm. A general program is developed to analyze the pressure distribution of the aerostatic journal bearing by Matlab tool. The results show that the improved finite difference method is highly effective, reliable, stable, and convergent. Even when very thin gas film thicknesses (less than 2 Win)are considered, the improved calculation method still yields a result and converges fast. 展开更多
关键词 aerostatic bearing: pressure distribution: Reynolds equation: finite difference method: variable step size
下载PDF
Interannual variations in energy conversion and interaction between the mesoscale eddy field and mean flow in the Kuroshio south of Japan 被引量:2
3
作者 马利斌 王强 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2014年第1期210-222,共13页
Using 19-year satellite altimetric data, variations in the eddy kinetic energy, energy exchanges and interaction between the eddy fi eld and mean fl ow are discussed for the Kuroshio south of Japan. In the seasonal cy... Using 19-year satellite altimetric data, variations in the eddy kinetic energy, energy exchanges and interaction between the eddy fi eld and mean fl ow are discussed for the Kuroshio south of Japan. In the seasonal cycle, the eddy kinetic energy level is a minimum in December/January and a maximum in April/May. In addition to seasonal variations, the eddy kinetic energy undergoes interannual changes. The energy transfers mainly from the mean fl ow to the eddy fi eld in the Kuroshio south of Japan, and dominant energy exchanges mainly occur along the Kuroshio path south of Japan in each year from 1993 to 2011. In addition, there is often barotropic instability south of Honshu. Regarding interactions between the eddy fi eld and mean fl ow, cyclonic and anticyclonic accelerations are also found along the Kuroshio path and they fl ank each other. There is cyclonic acceleration always imposed on southeast of Kyushu, and anticyclonic acceleration dominates south of Honshu from 2001 to mid-2005. Reynolds stress is used to explain the dynamic process of energy exchange. Furthermore, lag-correlation and linear regression analysis show that variability of the energy conversion rate and Reynolds stress involve responses to eddy acceleration at two time scales. The enhanced eddy acceleration induces large Reynolds stress, and enhanced Reynolds stress or barotropic instability further enforces energy transfer from the mean fl ow to the eddy fi eld. 展开更多
关键词 eddy kinetic energy energy conversion rate eddy-mean flow interaction Reynolds stress
下载PDF
Numerical Simulation of Aspect Ratio Effect on Turbulent Annular Flows
4
作者 M. Raddaoui 《Journal of Energy and Power Engineering》 2010年第12期17-23,共7页
The control of energy in various industrial applications passes by the comprehension of the phenomena of transfers especially in complex flows. The structure of the turbulent flow in the cavities in rotation depends o... The control of energy in various industrial applications passes by the comprehension of the phenomena of transfers especially in complex flows. The structure of the turbulent flow in the cavities in rotation depends on several parameters like the Reynolds number of rotation Ra and the aspect ratio of the cavity. The purpose of this work is to simulate numerically the effect of the aspect ratio on the level of turbulence in the annular steady flow with an incompressible fluid for three different configurations. In the first, the interior cylinder is fixed and the external is moving. The second configuration is the reverse. The third is the contra-rotating cylinders. For all these configurations, we varied the aspect ratio from 0.5 to 2.5. The numerical tool is based on a statistical model in a point using the closing of the second order of the transport equations of the Reynolds stresses (Reynolds Stress Model: RSM). The results of our numerical simulation show that this geometrical parameter can be an interesting factor to increase the level of turbulence that is often required in several industrial applications where the economy and the control of energy are always required. 展开更多
关键词 ENERGY turbulent flow Reynolds number of rotation aspect ratio of the cavity to simulate annular flow Reynolds Stress Model.
下载PDF
RANS (Reynolds Averaged Navier-Stokes) and LES (Large Eddy Simulations) of the Air-Water TOPFLOW-PTS Experiment
5
作者 Bojan Niceno Tilo Lumpp +1 位作者 Pavel Apanasevich Dirk Lucas 《Journal of Energy and Power Engineering》 2013年第7期1231-1237,共7页
The occurrence of a PTS (pressurized thermal shock) in a reactor vessel is an important phenomenon for assessing nuclear reactor safety. New experiment was conducted at HZDR (Helmholtz-Zentrum Dresden-Rossendorf),... The occurrence of a PTS (pressurized thermal shock) in a reactor vessel is an important phenomenon for assessing nuclear reactor safety. New experiment was conducted at HZDR (Helmholtz-Zentrum Dresden-Rossendorf), focused on thermal mixing processes in the cold leg and the downcomer of two-phase PTS case. Present work reports CFD (computational fluid dynamics) ana|ysis of steady-state air-water case. CFD analysis was conducted with two turbulence-modeling approaches, RANS (Reynolds Averaged Navier-stokes) and LES (large eddy simulations). Multiphase situation was modeled with VOF (volume of fluid) approach. Simulations were performed using the FLUENT 12 package. Comparison of computed temperatures results and measurements along the thermo-couple lines revealed results depend on the turbulence model used. 展开更多
关键词 Pressurized thermal shock computational fluid dynamics PANS LES.
下载PDF
Effects of rarefaction on the characteristics of micro gas journal bearings 被引量:8
6
作者 Hai-jun ZHANG Chang-sheng ZHU Ming TANG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2010年第1期43-49,共7页
Given the definition of the reference Knudsen number for micro gas journal bearings,the range in the number is related to the viscosity of air at different temperatures. A modified Reynolds equation for micro gas jour... Given the definition of the reference Knudsen number for micro gas journal bearings,the range in the number is related to the viscosity of air at different temperatures. A modified Reynolds equation for micro gas journal bearings based on Burgdorfer's first-order slip boundary condition is proposed that takes into account the gas rarefaction effect. The finite difference method (FDM) is adopted to solve the modified Reynolds equation to obtain the pressure profiles,load capacities and attitude angles for micro gas journal bearings at different reference Knudsen numbers,bearing numbers and journal eccentricity ratios. Numerical analysis shows that pressure profiles and non-dimensional load capacities decrease markedly as gas rarefaction in-creases. Attitude angles change conversely,and when the eccentricity ratio is less than 0.6,the attitude angles rise slightly and the influence of the reference Knudsen number is not marked. In addition,the effect of gas rarefaction on the non-dimensional load capacity and attitude angle decreases with smaller bearing numbers. 展开更多
关键词 Reference Knudsen number Rarefaction effect Reynolds equation Finite difference method (FDM)
原文传递
Large-eddy simulation for the aero-vibro-acoustic analysis:plate-cavity system excited by turbulent channel flow
7
作者 Lixing Zhu Ting Wu Guowei He 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2022年第10期38-55,共18页
The large-eddy simulation(LES)with the dynamic Smagorinsky model is used to predict the interior sound of an idealized vehicle cabin under the excitation of the wall pressures from turbulent channel flows.In compariso... The large-eddy simulation(LES)with the dynamic Smagorinsky model is used to predict the interior sound of an idealized vehicle cabin under the excitation of the wall pressures from turbulent channel flows.In comparison with direct numerical simulation(DNS),the LES results overpredict the sound pressure level(SPL)at low frequencies and underpredict the SPL at high frequencies.The incorrect predictions result from the incorrect prediction of LES on surface pressures,where the LES over-estimates the wavenumber and frequencies spectra of surface pressures at small wavenumbers and frequencies and under-estimates the spectra at large wavenumbers and frequencies.However,the LES results are close to the filtered-DNS results,implying that the unresolved scales are also important to surface pressures and interior sound.The Euler-Bernoulli beam under the excitation of exterior pressures,which serves as a simple model for aero-vibro-acoustics in the case of hydrodynamical fast,is used to explain the observed predictions and show that the Corcos model cannot represent the variation of turbulence pressure spectra at wavenumbers and frequencies.Therefore,the new requirement for the LES method,when applied to fluid-structural-acoustic interaction problems at high Reynolds numbers,is the correct prediction of wavenumber and frequency spectra of turbulence wall pressure. 展开更多
关键词 Large-eddy simulation Turbulent flow Aero-vibro-acoustics Surface pressure
原文传递
Effects of Reynolds number on the performance of a high pressure-ratio turbocharger compressor
8
作者 ZHENG XinQian LIN Yun +2 位作者 GAN BinLin ZHUGE WeiLin ZHANG YangJun 《Science China(Technological Sciences)》 SCIE EI CAS 2013年第6期1361-1369,共9页
The effects of Reynolds number on the performance of a high pressure-ratio turbocharger compressor were investigated by both experiments and numerical simulation. The experimental results show that the pressure ratio ... The effects of Reynolds number on the performance of a high pressure-ratio turbocharger compressor were investigated by both experiments and numerical simulation. The experimental results show that the pressure ratio and the efficiency of the compressor respectively decrease by 7.9% and 6.9% when Reynolds number drops from 9.86×10 5 to 2.96×10 5 . The numerical simulation predicts a similar trend as the experimental results although it underestimates the deterioration of the performance under low Reynolds number conditions. According to simulation results, the boundary layer thickness increases at the inducer, which decreases the throat area and leads to smaller choke mass flow rate. The increments of the boundary thickness are relatively small at the rear part of the impeller. The boundary layer separation flow is severe. The interaction between boundary layer separation flows and leakage flows causes the high loss region at the rear part of the impeller passage under low Reynolds number condition. 展开更多
关键词 Reynolds number high pressure-ratio TURBOCHARGER centrifugal compressor internal combustion engine
原文传递
β-distribution for Reynolds stress and turbulent heat flux in relaxation turbulent boundary layer of compression ramp
9
作者 YanChao Hu WeiTao Bi +1 位作者 ShiYao Li ZhenSu She 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2017年第12期36-44,共9页
A challenge in the study of turbulent boundary layers(TBLs) is to understand the non-equilibrium relaxation process after separation and reattachment due to shock-wave/boundary-layer interaction. The classical boundar... A challenge in the study of turbulent boundary layers(TBLs) is to understand the non-equilibrium relaxation process after separation and reattachment due to shock-wave/boundary-layer interaction. The classical boundary layer theory cannot deal with the strong adverse pressure gradient, and hence, the computational modeling of this process remains inaccurate. Here, we report the direct numerical simulation results of the relaxation TBL behind a compression ramp, which reveal the presence of intense large-scale eddies, with significantly enhanced Reynolds stress and turbulent heat flux. A crucial finding is that the wall-normal profiles of the excess Reynolds stress and turbulent heat flux obey a β-distribution, which is a product of two power laws with respect to the wall-normal distances from the wall and from the boundary layer edge. In addition, the streamwise decays of the excess Reynolds stress and turbulent heat flux also exhibit power laws with respect to the streamwise distance from the corner of the compression ramp. These results suggest that the relaxation TBL obeys the dilation symmetry, which is a specific form of self-organization in this complex non-equilibrium flow. The β-distribution yields important hints for the development of a turbulence model. 展开更多
关键词 compression ramp relaxation turbulent boundary layer Reynolds stress β-distribution symmetry
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部