有源可重构智能表面(Reconfigurable Intelligent Surface,RIS)相比于传统无源RIS不仅可以改变信号的相位,还能实现对信号的放大。为解决集成雷达传感和无线功率传输(Integrated Radar Sensing and Wireless Power Transfer,ISWPT)系统...有源可重构智能表面(Reconfigurable Intelligent Surface,RIS)相比于传统无源RIS不仅可以改变信号的相位,还能实现对信号的放大。为解决集成雷达传感和无线功率传输(Integrated Radar Sensing and Wireless Power Transfer,ISWPT)系统中雷达功能和功率传输功能相互制约的问题,本文研究了一种有源RIS辅助的ISWPT系统,通过联合优化基站发射波束和有源RIS的功率放大系数和反射相位,使系统的传感能力和功率传输能力同时达到最优。针对模型中存在的由于多个变量耦合导致的非凸问题,本文采用交替优化算法和半正定松弛算法来解决。大量的实验数据证明,有源RIS的引入使得ISWPT系统功率传输功能明显增强。展开更多
A new synergy decision method for radar and infrared search and track (IRST) data fusion is proposed, to solve such problems as how to decrease opportunities for radar suffering from being locked on by adverse electr...A new synergy decision method for radar and infrared search and track (IRST) data fusion is proposed, to solve such problems as how to decrease opportunities for radar suffering from being locked on by adverse electronic support measures (ESM), how to retrieve range information of the target during radar off, and how to detect the maneuver of the target. Firstly, polynomials used to predict target motion states are constructed. Secondly, a set of discriminants for detecting target maneuver are established by comparing the predicted values with the observations from IRST. Thirdly, a set of decisions are presented. Lastly, simulation is performed on the given scenario to test the validity of the method.展开更多
This paper reviews recent advances in radar sensor design for low-power healthcare,indoor real-time positioning and other applications of IoT.Various radar front-end architectures and digital processing methods are pr...This paper reviews recent advances in radar sensor design for low-power healthcare,indoor real-time positioning and other applications of IoT.Various radar front-end architectures and digital processing methods are proposed to improve the detection performance including detection accuracy,detection range and power consumption.While many of the reported designs were prototypes for concept verification,several integrated radar systems have been demonstrated with reliable measured results with demo systems.A performance comparison of latest radar chip designs has been provided to show their features of different architectures.With great development of IoT,short-range low-power radar sensors for healthcare and indoor positioning applications will attract more and more research interests in the near future.展开更多
Dynamic detection based on optics sensors and ranging radars is a new method to detect the luminous intensity of flight aid lights. The optics sensors can get the illumination information of each light, the ranging ra...Dynamic detection based on optics sensors and ranging radars is a new method to detect the luminous intensity of flight aid lights. The optics sensors can get the illumination information of each light, the ranging radar gets the distance information, and then data amalgamation technology is used to compute the luminous intensity of each light. A method to modify the errors of this dynamic detection system is presented. It avoids the accumulation error and measurement carrier’s excursion error by using peak value detection based on optics sensors to estimate the accurate position of each light, then to modify the lights’ lengthways distance information and transverse position information. The performance of the detection and ranging system is validated by some experiments and shown in pictures.展开更多
A novel fiber optic liquid level sensor based on laser radar (ladar) is reported here. Using the perfect technique of ladar in which the phase of amplitude modulated light wave reflected from the liquid surface is com...A novel fiber optic liquid level sensor based on laser radar (ladar) is reported here. Using the perfect technique of ladar in which the phase of amplitude modulated light wave reflected from the liquid surface is compared with that of original modulation signal, the distance can be measured precisely. A special symmetric compensating coaxial optical system is proposed to eliminate many adverse effects. It realized the one-time electronic-free optical measurement on a simulated oil tank and achieves an accuracy of 0.3%, within a temperature range of -10 ℃~+40 ℃ over a measuring of 0~10 m.展开更多
The advantage of lidar over other wind sensors is presented in this paper. With more than 20 years research, the development of the space-borne wind lidar is reviewed. Longer-term investigation has made many technolog...The advantage of lidar over other wind sensors is presented in this paper. With more than 20 years research, the development of the space-borne wind lidar is reviewed. Longer-term investigation has made many technologies suitable for the wind lidar measurement from an orbital platform become mature. However, there are still some problems to be solved. In order to obtain the optimal performance in wind detection, great importance is being attached to the simulation of a virtual space-borne wind lidar system on computer as developed by NASA and ESA.展开更多
文摘有源可重构智能表面(Reconfigurable Intelligent Surface,RIS)相比于传统无源RIS不仅可以改变信号的相位,还能实现对信号的放大。为解决集成雷达传感和无线功率传输(Integrated Radar Sensing and Wireless Power Transfer,ISWPT)系统中雷达功能和功率传输功能相互制约的问题,本文研究了一种有源RIS辅助的ISWPT系统,通过联合优化基站发射波束和有源RIS的功率放大系数和反射相位,使系统的传感能力和功率传输能力同时达到最优。针对模型中存在的由于多个变量耦合导致的非凸问题,本文采用交替优化算法和半正定松弛算法来解决。大量的实验数据证明,有源RIS的引入使得ISWPT系统功率传输功能明显增强。
文摘A new synergy decision method for radar and infrared search and track (IRST) data fusion is proposed, to solve such problems as how to decrease opportunities for radar suffering from being locked on by adverse electronic support measures (ESM), how to retrieve range information of the target during radar off, and how to detect the maneuver of the target. Firstly, polynomials used to predict target motion states are constructed. Secondly, a set of discriminants for detecting target maneuver are established by comparing the predicted values with the observations from IRST. Thirdly, a set of decisions are presented. Lastly, simulation is performed on the given scenario to test the validity of the method.
文摘This paper reviews recent advances in radar sensor design for low-power healthcare,indoor real-time positioning and other applications of IoT.Various radar front-end architectures and digital processing methods are proposed to improve the detection performance including detection accuracy,detection range and power consumption.While many of the reported designs were prototypes for concept verification,several integrated radar systems have been demonstrated with reliable measured results with demo systems.A performance comparison of latest radar chip designs has been provided to show their features of different architectures.With great development of IoT,short-range low-power radar sensors for healthcare and indoor positioning applications will attract more and more research interests in the near future.
基金Science and Technology Development Project Item of Tianjin(06YFGZGX00800)Science and Technology Item of CAAC(MY0517416)
文摘Dynamic detection based on optics sensors and ranging radars is a new method to detect the luminous intensity of flight aid lights. The optics sensors can get the illumination information of each light, the ranging radar gets the distance information, and then data amalgamation technology is used to compute the luminous intensity of each light. A method to modify the errors of this dynamic detection system is presented. It avoids the accumulation error and measurement carrier’s excursion error by using peak value detection based on optics sensors to estimate the accurate position of each light, then to modify the lights’ lengthways distance information and transverse position information. The performance of the detection and ranging system is validated by some experiments and shown in pictures.
文摘A novel fiber optic liquid level sensor based on laser radar (ladar) is reported here. Using the perfect technique of ladar in which the phase of amplitude modulated light wave reflected from the liquid surface is compared with that of original modulation signal, the distance can be measured precisely. A special symmetric compensating coaxial optical system is proposed to eliminate many adverse effects. It realized the one-time electronic-free optical measurement on a simulated oil tank and achieves an accuracy of 0.3%, within a temperature range of -10 ℃~+40 ℃ over a measuring of 0~10 m.
基金supported by National High Tech 863 Project(No.2002AA135280)National Natural Science Foundation of China No.40176011International Bureau of BMBF
文摘The advantage of lidar over other wind sensors is presented in this paper. With more than 20 years research, the development of the space-borne wind lidar is reviewed. Longer-term investigation has made many technologies suitable for the wind lidar measurement from an orbital platform become mature. However, there are still some problems to be solved. In order to obtain the optimal performance in wind detection, great importance is being attached to the simulation of a virtual space-borne wind lidar system on computer as developed by NASA and ESA.