[Objective] The paper is to analyze physical quantities and radar parameter of hail shooting and heavy convective rainfall weather. [Method] Using radar data of Jinan station during 2002 and 2008, combined with soundi...[Objective] The paper is to analyze physical quantities and radar parameter of hail shooting and heavy convective rainfall weather. [Method] Using radar data of Jinan station during 2002 and 2008, combined with sounding data, the physical quantities and radar parameter of hail shooting and heavy convective rainfall weather are compared and analyzed. [Result] The smaller Sl is conducive to the generation of hail weather. When K〉 35 ~C, the probability for occurrence of heavy rainfall weather is significantly increased; when K〈20 ^(3, the probability for occurrence of heavy rainfall weather is significantly decreased. When CAPE value is greater than 1 500 J/KG, the probability for occurrence of hail weather is significantly decreased, while the probability for occurrence of heavy rainfall weather is significantly in- creased. The possibility for occurrence of hail monomer is small when the wind shear is less than 5 m/s; and it is large while wind shear is greater than 20 m/s. The radar forecasting indexes of hail monomer is as follows: VIL value reaches 35 kg/m2 (May), 43 kg/m2 (June and July), the monomer height is greater than 9 km, the maximum reflectivity factor is larger than 60 dBz, strong center height reaches 3.3 km (May), 4.3 km (June) and 5.5 km (July); VlL value of heavy rainfall monomer generally is below 25 kg/m2. [Conclusion] The paper provides basis form prediction of hail and heavy rainfall.展开更多
Airborne measurements were collected during a stepwise ascent within a nimbostratus cloud associated with a cold vortex depression over the Jilin Province on 21 June 2005 to study cloud structure and ice particle spec...Airborne measurements were collected during a stepwise ascent within a nimbostratus cloud associated with a cold vortex depression over the Jilin Province on 21 June 2005 to study cloud structure and ice particle spectra. The melting layer of the nimbostratus was clearly defined in the radar images. The microphysical structure of the nimbostratus was elucidated by a King liquid water probe and Particle Measuring Systems (PMS) probes aboard the research aircraft. The PMS 2-D images provided detailed information of ice crystal transformations. A thick layer of supercooled cloud was observed, and the high ice particle concentrations at temperatures ranging from -3℃ to -6℃ were consistent with Hallett-Mossop ice multiplication. The shape of ice crystals from near the cloud top to the melting layer were in the form of columns, needles, aggregations, and plates. In addition, significant horizontal variability was evident on the scale of few hundred meters. Particle spectra in this cloud were adequately described by exponential relationships. Relationship between the intercept (No) and slope (2) parameters of an exponential size distribution was well characterized by a power law.展开更多
基金Supported by Science and Technology Development Project of Shandong Science and Technology Hall(2010GSF10805)National Natural Science Foundation of China(41140036)~~
文摘[Objective] The paper is to analyze physical quantities and radar parameter of hail shooting and heavy convective rainfall weather. [Method] Using radar data of Jinan station during 2002 and 2008, combined with sounding data, the physical quantities and radar parameter of hail shooting and heavy convective rainfall weather are compared and analyzed. [Result] The smaller Sl is conducive to the generation of hail weather. When K〉 35 ~C, the probability for occurrence of heavy rainfall weather is significantly increased; when K〈20 ^(3, the probability for occurrence of heavy rainfall weather is significantly decreased. When CAPE value is greater than 1 500 J/KG, the probability for occurrence of hail weather is significantly decreased, while the probability for occurrence of heavy rainfall weather is significantly in- creased. The possibility for occurrence of hail monomer is small when the wind shear is less than 5 m/s; and it is large while wind shear is greater than 20 m/s. The radar forecasting indexes of hail monomer is as follows: VIL value reaches 35 kg/m2 (May), 43 kg/m2 (June and July), the monomer height is greater than 9 km, the maximum reflectivity factor is larger than 60 dBz, strong center height reaches 3.3 km (May), 4.3 km (June) and 5.5 km (July); VlL value of heavy rainfall monomer generally is below 25 kg/m2. [Conclusion] The paper provides basis form prediction of hail and heavy rainfall.
基金supported by the National Natural Science Foundation of China (Grant No. 40805056)the National Key Technologies R&D Program of China (Grant No. 2006BAC12B00)
文摘Airborne measurements were collected during a stepwise ascent within a nimbostratus cloud associated with a cold vortex depression over the Jilin Province on 21 June 2005 to study cloud structure and ice particle spectra. The melting layer of the nimbostratus was clearly defined in the radar images. The microphysical structure of the nimbostratus was elucidated by a King liquid water probe and Particle Measuring Systems (PMS) probes aboard the research aircraft. The PMS 2-D images provided detailed information of ice crystal transformations. A thick layer of supercooled cloud was observed, and the high ice particle concentrations at temperatures ranging from -3℃ to -6℃ were consistent with Hallett-Mossop ice multiplication. The shape of ice crystals from near the cloud top to the melting layer were in the form of columns, needles, aggregations, and plates. In addition, significant horizontal variability was evident on the scale of few hundred meters. Particle spectra in this cloud were adequately described by exponential relationships. Relationship between the intercept (No) and slope (2) parameters of an exponential size distribution was well characterized by a power law.