Cameras can reliably detect human motions in a normal environment, but they are usually affected by sudden illumination changes and complex conditions, which are the major obstacles to the reliability and robustness o...Cameras can reliably detect human motions in a normal environment, but they are usually affected by sudden illumination changes and complex conditions, which are the major obstacles to the reliability and robustness of the system. To solve this problem, a novel integration method was proposed to combine hi-static ultra-wideband radar and cameras. In this recognition system, two cameras are used to localize the object's region, regions while a radar is used to obtain its 3D motion models on a mobile robot. The recognition results can be matched in the 3D motion library in order to recognize its motions. To confirm the effectiveness of the proposed method, the experimental results of recognition using vision sensors and those of recognition using the integration method were compared in different environments. Higher correct-recognition rate is achieved in the experiment.展开更多
基金Supported by National Natural Science Foundation of China(No.50875193)
文摘Cameras can reliably detect human motions in a normal environment, but they are usually affected by sudden illumination changes and complex conditions, which are the major obstacles to the reliability and robustness of the system. To solve this problem, a novel integration method was proposed to combine hi-static ultra-wideband radar and cameras. In this recognition system, two cameras are used to localize the object's region, regions while a radar is used to obtain its 3D motion models on a mobile robot. The recognition results can be matched in the 3D motion library in order to recognize its motions. To confirm the effectiveness of the proposed method, the experimental results of recognition using vision sensors and those of recognition using the integration method were compared in different environments. Higher correct-recognition rate is achieved in the experiment.