Knowledge of the vertical distribution of aerosols in the free troposphere is important for estimating their impact on climate. In this study, direct observations of the vertical distribution of aerosols in the free t...Knowledge of the vertical distribution of aerosols in the free troposphere is important for estimating their impact on climate. In this study, direct observations of the vertical distribution of aerosols in the free troposphere are made using surface Micro-Pulse Lidar (MPL) measurements. The MPL measurements were made at the Loess Plateau (35.95°N, 104.1°E), which is near the major dust source regions of the Taklimakan and Gobi deserts. The vertical distribution of the MPL backscattering suggested that nondust aerosols floated from ground level to an altitude of approximately 9 km around the source regions. Early morning hours are characterized by a shallow aerosol layer of a few hundred meters thick. As the day progresses, strong convective eddies transport the aero- sols vertically to more than 1500 m.展开更多
When imaging ocean surface waves by X-band marine radar, the radar backscatter from the sea surface is modulated by the long surface gravity waves. The modulation transfer function (MTF) comprises tilt, hydrodynamic...When imaging ocean surface waves by X-band marine radar, the radar backscatter from the sea surface is modulated by the long surface gravity waves. The modulation transfer function (MTF) comprises tilt, hydrodynamic, and shadowing modulations. A conventional linear MTF was derived using HH-polarized radar observations under conditions of deep water. In this study, we propose a new quadratic polynomial MTF based on W-polarized radar measurements taken from heterogeneous nearshore wave fields. This new MTF is obtained using a radar-observed image spectrum and in situ buoy-measured wave frequency spectrum. We validate the MTF by comparing peak and mean wave periods retrieved from X-band marine radar image sequences with those measured by the buoy. It is shown that the retrieval accuracies of peak and mean wave periods of the new MTF are better than the conventional MTF. The results also show that the bias and root mean square errors of the peak and mean wave periods of the new MTF are 0.05 and 0.88 s, and 0.32 and 0.53 s, respectively, while those of the conventional MTF are 0.61 and 0.98 s, and 1.39 and 1.48 s, respectively. Moreover, it is also shown that the retrieval results are insensitive to the coefficients in the proposed MTF.展开更多
Flat thin ice (<30 cm thick) is a common ice type in the Bohai Sea, China. Ice thickness detection is important to offshore exploration and marine transport in winter. Synthetic aperture radar (SAR) can be used to ...Flat thin ice (<30 cm thick) is a common ice type in the Bohai Sea, China. Ice thickness detection is important to offshore exploration and marine transport in winter. Synthetic aperture radar (SAR) can be used to acquire sea ice data in all weather conditions, and it is a useful tool for monitoring sea ice conditions. In this paper, we combine a multi-layered sea ice electromagnetic (EM) scattering model with a sea ice thermodynamic model to assess the determination of the thickness of flat thin ice in the Bohai Sea using SAR at different frequencies, polarization, and incidence angles. Our modeling studies suggest that co-polarization backscattering coefficients and the co-polarized ratio can be used to retrieve the thickness of flat thin ice from C- and X-band SAR, while the co-polarized correlation coefficient can be used to retrieve flat thin ice thickness from L-, C-, and X-band SAR. Importantly, small or moderate incidence angles should be chosen to avoid the effect of speckle noise.展开更多
Y2001-62853-1806 0206863基于熵准则的一种逆合成孔径雷达新自聚焦技术=Anew kind of ISAR autofocusing technique based on en-tropy criteria[会,英]/Li,X.& Sun,H.-B.//2000 5<sup>th</sup>International Conferen...Y2001-62853-1806 0206863基于熵准则的一种逆合成孔径雷达新自聚焦技术=Anew kind of ISAR autofocusing technique based on en-tropy criteria[会,英]/Li,X.& Sun,H.-B.//2000 5<sup>th</sup>International Conference on Signal Processing Proceed-ings,Vol.Ⅲ of Ⅲ.—1806~1809(HE)本文介绍了逆合成孔径雷达成像的一种新的自聚焦技术,这种非参数技术基于熵最小原理,实际展开更多
基金supported by the National Natural Science Foundation of China under Grant Nos. 40628005 and 40633017
文摘Knowledge of the vertical distribution of aerosols in the free troposphere is important for estimating their impact on climate. In this study, direct observations of the vertical distribution of aerosols in the free troposphere are made using surface Micro-Pulse Lidar (MPL) measurements. The MPL measurements were made at the Loess Plateau (35.95°N, 104.1°E), which is near the major dust source regions of the Taklimakan and Gobi deserts. The vertical distribution of the MPL backscattering suggested that nondust aerosols floated from ground level to an altitude of approximately 9 km around the source regions. Early morning hours are characterized by a shallow aerosol layer of a few hundred meters thick. As the day progresses, strong convective eddies transport the aero- sols vertically to more than 1500 m.
基金Supported by the National High Technology Research and Development Program of China(863 Program)(No.2013AA09A505)the National Natural Science Foundation of China(Nos.41076119,41176160,41476158)+4 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the Natural Science Youth Foundation of Jiangsu Province(No.BK2012467)the Natural Science State Key Foundation of Jiangsu Province(No.BK2011008)the National Natural Science Youth Foundation of China(No.41206171)the Startup Foundation for Introducing Talent of Nanjing University of Information Science and Technology(No.S8113078001)
文摘When imaging ocean surface waves by X-band marine radar, the radar backscatter from the sea surface is modulated by the long surface gravity waves. The modulation transfer function (MTF) comprises tilt, hydrodynamic, and shadowing modulations. A conventional linear MTF was derived using HH-polarized radar observations under conditions of deep water. In this study, we propose a new quadratic polynomial MTF based on W-polarized radar measurements taken from heterogeneous nearshore wave fields. This new MTF is obtained using a radar-observed image spectrum and in situ buoy-measured wave frequency spectrum. We validate the MTF by comparing peak and mean wave periods retrieved from X-band marine radar image sequences with those measured by the buoy. It is shown that the retrieval accuracies of peak and mean wave periods of the new MTF are better than the conventional MTF. The results also show that the bias and root mean square errors of the peak and mean wave periods of the new MTF are 0.05 and 0.88 s, and 0.32 and 0.53 s, respectively, while those of the conventional MTF are 0.61 and 0.98 s, and 1.39 and 1.48 s, respectively. Moreover, it is also shown that the retrieval results are insensitive to the coefficients in the proposed MTF.
基金Supported by the Major Program of the National Natural Science Foundation of China(No.60890075)the National Natural Science Foundation of China for Young Scientists(No.40906093)
文摘Flat thin ice (<30 cm thick) is a common ice type in the Bohai Sea, China. Ice thickness detection is important to offshore exploration and marine transport in winter. Synthetic aperture radar (SAR) can be used to acquire sea ice data in all weather conditions, and it is a useful tool for monitoring sea ice conditions. In this paper, we combine a multi-layered sea ice electromagnetic (EM) scattering model with a sea ice thermodynamic model to assess the determination of the thickness of flat thin ice in the Bohai Sea using SAR at different frequencies, polarization, and incidence angles. Our modeling studies suggest that co-polarization backscattering coefficients and the co-polarized ratio can be used to retrieve the thickness of flat thin ice from C- and X-band SAR, while the co-polarized correlation coefficient can be used to retrieve flat thin ice thickness from L-, C-, and X-band SAR. Importantly, small or moderate incidence angles should be chosen to avoid the effect of speckle noise.
文摘Y2001-62853-1806 0206863基于熵准则的一种逆合成孔径雷达新自聚焦技术=Anew kind of ISAR autofocusing technique based on en-tropy criteria[会,英]/Li,X.& Sun,H.-B.//2000 5<sup>th</sup>International Conference on Signal Processing Proceed-ings,Vol.Ⅲ of Ⅲ.—1806~1809(HE)本文介绍了逆合成孔径雷达成像的一种新的自聚焦技术,这种非参数技术基于熵最小原理,实际