Shipboard X-band radar images acquired on 24 June 2009 are used to study nonlinear internal wave characteristics in the northeastern South China Sea.The studied images show three nonlinear internal waves in a packet.A...Shipboard X-band radar images acquired on 24 June 2009 are used to study nonlinear internal wave characteristics in the northeastern South China Sea.The studied images show three nonlinear internal waves in a packet.A method based on the Radon Transform technique is introduced to calculate internal wave parameters such as the direction of propagation and internal wave velocity from backscatter images.Assuming that the ocean is a two-layer finite depth system,we can derive the mixed-layer depth by applying the internal wave velocity to the mixed-layer depth formula.Results show reasonably good agreement with in-situ thermistor chain and conductivity-temperature-depth data sets.展开更多
Synthetic aperture radar (SAR) provides a large amount of image data for the observation and research of oceanic eddies. The use of SAR images to automatically depict the shape of eddies and extract the eddy informa...Synthetic aperture radar (SAR) provides a large amount of image data for the observation and research of oceanic eddies. The use of SAR images to automatically depict the shape of eddies and extract the eddy information is of great significance to the study of the oceanic eddies and the application of SAR eddy images. In this paper, a method of automatic shape depiction and information extraction for oceanic eddies in SAR images is proposed, which is for the research of spiral eddies. Firstly, the skeleton image is got by the skeletonization of SAR image. Secondly, the logarithmic spirals detected in the skeleton image are drawn on the SAR image to depict the shape of oceanic eddies. Finally, the eddy information is extracted based on the results of shape depiction. The sentinel 1 SAR eddy images in the Black Sea area were used for the experiment in this paper. The experimental results show that the proposed method can automatically depict the shape of eddies and extract the eddy information. The shape depiction results are consistent with the actual shape of the eddies, and the extracted eddy information is consistent with the reference information extracted by manual operation. As a result, the validity of the method is verified.展开更多
A new method for the retrieval of ocean wave parameters from SAR imagery is developed,based on the shape-from-shading(SFS)technique.Previously,the SFS technique has been used in the reconstruction of 3D landform infor...A new method for the retrieval of ocean wave parameters from SAR imagery is developed,based on the shape-from-shading(SFS)technique.Previously,the SFS technique has been used in the reconstruction of 3D landform information from SAR images,in order to generate elevation maps of topography for land surfaces.Here,in order to retrieve ocean wave characteristics,we apply the SFS methodology,together with a method to orient the angular measurements of the azimuth slope and range slope,in the measurement of ocean surface waves.This method is applied to high resolution fine-quad polarization mode(HH,VV,VH and HV)C-band RADARSAT-2 SAR imagery,in order to retrieve ocean wave spectra and extract wave parameters.Collocated in situ buoy measurements are used to validate the reliability of this method.Results show that the method can reliably estimate wave height,dominant wave period,dominant wave length and dominant wave direction from C-band SAR images.The advantage of this method is that it does not depend on modulation transfer functions(MTFs),in order to measure ocean surface waves.This method can be used in monitoring ocean surface wave propagation through open water areas into ice-covered areas,especially the marginal ice zone(MIZ)in polar oceans.展开更多
基金Supported by the Key Program and the Normal Program of the Knowledge Innovation Program of the Chinese Academy of Sciences (Nos.KZCX1-YW-12-04 and KZCX2-YW-201)the Instrument Developing Project of the Chinese Academy of Sciences (No.YZ200724)
文摘Shipboard X-band radar images acquired on 24 June 2009 are used to study nonlinear internal wave characteristics in the northeastern South China Sea.The studied images show three nonlinear internal waves in a packet.A method based on the Radon Transform technique is introduced to calculate internal wave parameters such as the direction of propagation and internal wave velocity from backscatter images.Assuming that the ocean is a two-layer finite depth system,we can derive the mixed-layer depth by applying the internal wave velocity to the mixed-layer depth formula.Results show reasonably good agreement with in-situ thermistor chain and conductivity-temperature-depth data sets.
文摘Synthetic aperture radar (SAR) provides a large amount of image data for the observation and research of oceanic eddies. The use of SAR images to automatically depict the shape of eddies and extract the eddy information is of great significance to the study of the oceanic eddies and the application of SAR eddy images. In this paper, a method of automatic shape depiction and information extraction for oceanic eddies in SAR images is proposed, which is for the research of spiral eddies. Firstly, the skeleton image is got by the skeletonization of SAR image. Secondly, the logarithmic spirals detected in the skeleton image are drawn on the SAR image to depict the shape of oceanic eddies. Finally, the eddy information is extracted based on the results of shape depiction. The sentinel 1 SAR eddy images in the Black Sea area were used for the experiment in this paper. The experimental results show that the proposed method can automatically depict the shape of eddies and extract the eddy information. The shape depiction results are consistent with the actual shape of the eddies, and the extracted eddy information is consistent with the reference information extracted by manual operation. As a result, the validity of the method is verified.
基金This work was supported by the National Natural Science Foundation of China(Grant NO.41276187)the Global Change Research Program of China(Grant No.2015CB953901)+3 种基金the Startup Foundation for Introducing Talent of NUIST(Grant No.20110310)Program for Innovation Research and Entrepreneurship Team in Jiangsu Provincethe CFOSAT project,the Canadian Program on Energy Research and Developmentthe Canadian Space Agency GRIP program funding for wave-ice interactions
文摘A new method for the retrieval of ocean wave parameters from SAR imagery is developed,based on the shape-from-shading(SFS)technique.Previously,the SFS technique has been used in the reconstruction of 3D landform information from SAR images,in order to generate elevation maps of topography for land surfaces.Here,in order to retrieve ocean wave characteristics,we apply the SFS methodology,together with a method to orient the angular measurements of the azimuth slope and range slope,in the measurement of ocean surface waves.This method is applied to high resolution fine-quad polarization mode(HH,VV,VH and HV)C-band RADARSAT-2 SAR imagery,in order to retrieve ocean wave spectra and extract wave parameters.Collocated in situ buoy measurements are used to validate the reliability of this method.Results show that the method can reliably estimate wave height,dominant wave period,dominant wave length and dominant wave direction from C-band SAR images.The advantage of this method is that it does not depend on modulation transfer functions(MTFs),in order to measure ocean surface waves.This method can be used in monitoring ocean surface wave propagation through open water areas into ice-covered areas,especially the marginal ice zone(MIZ)in polar oceans.