期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于膜粒子群算法的雷达辐射源信号多目标特征选择方法研究 被引量:1
1
作者 宋楠 陈韬伟 +1 位作者 赵昆 余益民 《云南民族大学学报(自然科学版)》 CAS 2020年第5期501-507,共7页
针对粒子群算法易陷入局部最优和收敛性能较差问题,受膜计算优化理论启发,提出1种膜框架下的粒子群算法,用于解决无监督的多目标雷达辐射源信号特征选择问题.在表层膜中,采用非支配排序和拥挤距离机制使算法既保留了多目标粒子群优化算... 针对粒子群算法易陷入局部最优和收敛性能较差问题,受膜计算优化理论启发,提出1种膜框架下的粒子群算法,用于解决无监督的多目标雷达辐射源信号特征选择问题.在表层膜中,采用非支配排序和拥挤距离机制使算法既保留了多目标粒子群优化算法的快速收敛性,同时使用基本膜的进化规则也使解集具备较好的多样性,避免了过早收敛问题.在雷达辐射源信号特征提取中,利用一阶差分自相关方法提取包络特征,采用相关度和冗余度两个目标优化数据对象,以评价雷达辐射源信号特征子集的质量,并应用于雷达辐射源信号的脉内特征选择.实验结果表现出算法具有较好的可聚类性和全局收敛性,特征信号之间明显可分,边界清晰无交叠,获得了更高的雷达源信号分选识别正确率. 展开更多
关键词 膜计算 粒子群算法 多目标优化 雷达辐射源信号特征选择
下载PDF
ReliefF算法在雷达辐射源信号识别中的应用 被引量:5
2
作者 杨志新 段美军 《成都大学学报(自然科学版)》 2012年第2期151-153,共3页
采用小波包变换提取雷达辐射源信号特征能够有效对信号进行识别,然而,由小波包变换提取的信号特征维数高,部分信号特征受噪声污染严重.基于此,采用ReliefF算法对信号特征的分类能力进行评价,选择出小波包中分类能力强的信号特征,再通过... 采用小波包变换提取雷达辐射源信号特征能够有效对信号进行识别,然而,由小波包变换提取的信号特征维数高,部分信号特征受噪声污染严重.基于此,采用ReliefF算法对信号特征的分类能力进行评价,选择出小波包中分类能力强的信号特征,再通过特征相关度算法去除分类能力相近的冗余特征,利用剩余的分类能力强的信号特征组成特征向量进行分类.仿真实验结果显示,该方法用较少的信号特征能够获得较高的正确识别率. 展开更多
关键词 雷达辐射源信号 小波包变换 RELIEFF算法 雷达辐射源信号特征
下载PDF
Radar emitter signal recognition based on multi-scale wavelet entropy and feature weighting 被引量:16
3
作者 李一兵 葛娟 +1 位作者 林云 叶方 《Journal of Central South University》 SCIE EI CAS 2014年第11期4254-4260,共7页
In modern electromagnetic environment, radar emitter signal recognition is an important research topic. On the basis of multi-resolution wavelet analysis, an adaptive radar emitter signal recognition method based on m... In modern electromagnetic environment, radar emitter signal recognition is an important research topic. On the basis of multi-resolution wavelet analysis, an adaptive radar emitter signal recognition method based on multi-scale wavelet entropy feature extraction and feature weighting was proposed. With the only priori knowledge of signal to noise ratio(SNR), the method of extracting multi-scale wavelet entropy features of wavelet coefficients from different received signals were combined with calculating uneven weight factor and stability weight factor of the extracted multi-dimensional characteristics. Radar emitter signals of different modulation types and different parameters modulated were recognized through feature weighting and feature fusion. Theoretical analysis and simulation results show that the presented algorithm has a high recognition rate. Additionally, when the SNR is greater than-4 d B, the correct recognition rate is higher than 93%. Hence, the proposed algorithm has great application value. 展开更多
关键词 emitter recognition multi-scale wavelet entropy feature weighting uneven weight factor stability weight factor
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部