[Objective] The paper is to analyze physical quantities and radar parameter of hail shooting and heavy convective rainfall weather. [Method] Using radar data of Jinan station during 2002 and 2008, combined with soundi...[Objective] The paper is to analyze physical quantities and radar parameter of hail shooting and heavy convective rainfall weather. [Method] Using radar data of Jinan station during 2002 and 2008, combined with sounding data, the physical quantities and radar parameter of hail shooting and heavy convective rainfall weather are compared and analyzed. [Result] The smaller Sl is conducive to the generation of hail weather. When K〉 35 ~C, the probability for occurrence of heavy rainfall weather is significantly increased; when K〈20 ^(3, the probability for occurrence of heavy rainfall weather is significantly decreased. When CAPE value is greater than 1 500 J/KG, the probability for occurrence of hail weather is significantly decreased, while the probability for occurrence of heavy rainfall weather is significantly in- creased. The possibility for occurrence of hail monomer is small when the wind shear is less than 5 m/s; and it is large while wind shear is greater than 20 m/s. The radar forecasting indexes of hail monomer is as follows: VIL value reaches 35 kg/m2 (May), 43 kg/m2 (June and July), the monomer height is greater than 9 km, the maximum reflectivity factor is larger than 60 dBz, strong center height reaches 3.3 km (May), 4.3 km (June) and 5.5 km (July); VlL value of heavy rainfall monomer generally is below 25 kg/m2. [Conclusion] The paper provides basis form prediction of hail and heavy rainfall.展开更多
In this paper, the performance of median filter, elevation dependent adaptive sigma median filter, and directionally dependent adaptive sigma median filter are tested on both InSAR Tandem DEM and simulated high-level ...In this paper, the performance of median filter, elevation dependent adaptive sigma median filter, and directionally dependent adaptive sigma median filter are tested on both InSAR Tandem DEM and simulated high-level noisy DEM. Through the comparison, the directionally dependent adaptive sigma median filter is proved to be the most effective one not only in the noise removing but also in the boundary preserve.展开更多
A new ocean wave and sea surface current monitoring system with horizontally-(HH) and vertically-(VV) polarized X-band radar was developed.Two experiments into the use of the radar system were carried out at two sites...A new ocean wave and sea surface current monitoring system with horizontally-(HH) and vertically-(VV) polarized X-band radar was developed.Two experiments into the use of the radar system were carried out at two sites,respectively,for calibration process in Zhangzi Island of the Yellow Sea,and for validation in the Yellow Sea and South China Sea.Ocean wave parameters and sea surface current velocities were retrieved from the dual polarized radar image sequences based on an inverse method.The results obtained from dual-polarized radar data sets acquired in Zhangzi Island are compared with those from an ocean directional buoy.The results show that ocean wave parameters and sea surface current velocities retrieved from radar image sets are in a good agreement with those observed by the buoy.In particular,it has been found that the vertically-polarized radar is better than the horizontally-polarized radar in retrieving ocean wave parameters,especially in detecting the significant wave height below 1.0 m.展开更多
Synthetic aperture radar interferometry (InSAR) has been used as an innovative technique for digital elevation model (DEM) and topographic map generation. In this paper, external DEMs are used for InSAR DEM generation...Synthetic aperture radar interferometry (InSAR) has been used as an innovative technique for digital elevation model (DEM) and topographic map generation. In this paper, external DEMs are used for InSAR DEM generation to reduce the errors in data processing. The DEMs generated from repeat-pass InSAR are compared. For steep slopes and severe changes in topography, phase unwrapping quality can be improved by subtracting the phase calculated from an external DEM. It is affirmative that the absolute height accuracy of the InSAR DEM is improved by using external DEM. The data processing was undertaken without the use of ground control points and other manual operation.展开更多
For the measurement of vertical profiles of sound speed in the sea using laser excited Brillouin scattering, a high resolution measurement of Brillouin frequency shift is required. In this work, a molecular absorption...For the measurement of vertical profiles of sound speed in the sea using laser excited Brillouin scattering, a high resolution measurement of Brillouin frequency shift is required. In this work, a molecular absorption cell was selected as the frequency shift discriminator and several kinds of absorption gases were tried. It was found that the strong line (#1095) of 127 I 2 at 18783.3297 cm -1 and two absorption lines of 129 I 2 located at the two sides of the #1095 line of 127 I 2 could be used as frequency shift discriminator to detect the changes of the Brillouin frequency shift. This selection is the best one within the range from 532.0131 nm to 532.5154 nm. But it is not perfect and there is a lot of work to do before its practical application.展开更多
Light detection and ranging (LIDAR) based on time of flight (TOF) method is widely used in many fields related to distance measurement. LIDAR generally uses laser diode (LD) to emit the pulsed laser with high peak pow...Light detection and ranging (LIDAR) based on time of flight (TOF) method is widely used in many fields related to distance measurement. LIDAR generally uses laser diode (LD) to emit the pulsed laser with high peak power and short duration to ensure a large distance measurement range and eye safety. To achieve this goal, we propose a pulsed LD drive method producing the drive current with high peak and narrow pulse width. We analyze the key issues and related theories of the drive current generation based on this method and design an LD driver. A model of drive current generation is established and the influence of operating frequency on drive current is discussed. The LD driver is simulated by software and verified by experiments. The working frequency of the driver changes from 20 kHz to 100 kHz and the charging voltage is set at 130 V. The current produced by this driver has a duration of 8.8 ns and a peak of about 35 A, and the peak output optical power of the LD exceeds 75 W.展开更多
Due to the disturbances arising from the coherence of reflected waves and from echo noise,problems such as limitations,instability and poor accuracy exist with the current quantitative analysis methods.According to th...Due to the disturbances arising from the coherence of reflected waves and from echo noise,problems such as limitations,instability and poor accuracy exist with the current quantitative analysis methods.According to the intrinsic features of GPR signals and wavelet time–frequency analysis,an optimal wavelet basis named GPR3.3 wavelet is constructed via an improved biorthogonal wavelet construction method to quantitatively analyse the GPR signal.A new quantitative analysis method based on the biorthogonal wavelet(the QAGBW method)is proposed and applied in the analysis of analogue and measured signals.The results show that compared with the Bayesian frequency-domain blind deconvolution and with existing wavelet bases,the QAGBW method based on optimal wavelet can limit the disturbance from factors such as the coherence of reflected waves and echo noise,improve the quantitative analytical precision of the GPR signal,and match the minimum thickness for quantitative analysis with the vertical resolution of GPR detection.展开更多
During August 2013,a mobile Rayleigh lidar was deployed in Lhasa,Tibet(29.6°N,91.0°E) for making measurements of middle atmosphere densities and temperatures from 30 to 90 km.In this paper,the authors presen...During August 2013,a mobile Rayleigh lidar was deployed in Lhasa,Tibet(29.6°N,91.0°E) for making measurements of middle atmosphere densities and temperatures from 30 to 90 km.In this paper,the authors present the initial results from this scientific campaign,Middle Atmosphere Remote Mobile Observatory in Tibet(MARMOT),and compared the results to the MSIS-00(Mass Spectrometer and Incoherent Scatter) model.This work will advance our understanding of middle atmosphere dynamic processes,especially over the Tibetan Plateau area.展开更多
The development and application of the ''digital mine'' concept in China depends heavily upon the use of remote sensing data as well as domestic expertise and awareness. Illegal mining of mineral resou...The development and application of the ''digital mine'' concept in China depends heavily upon the use of remote sensing data as well as domestic expertise and awareness. Illegal mining of mineral resources has been a serious long term problem frustrating the Xishimen Iron Ore Mine management. This mine is located in Wu'an county in Hebei province, China. Illegal activities have led to enormous economic losses by interfering with the normal operation of the Xishimen mine and have ruined the surrounding environ- ment and the stability of the Mahe riverbed the crosses the mined area. This paper is based on field recon- naissance taken over many years around the mine area. The ground survey data are integrated with Differential Synthetic Aperture Radar Interferometry (D-InSAR) results from ALOS/PALSAR data to pin- point mining locations. By investigating the relationship between the resulting interferometric deforma- tion pattern and the mining schedule, which is known a priori, areas affected by illegal mining activities are identified. To some extent these areas indicate the location of the illegal site. The results clearly dem- onstrate D-InSAR's ability to cost-effectively monitor illegal mining activities.展开更多
One-sided ascending or descending Synthetic Aperture Radar(SAR) stereoradargrammetry has limited accuracy of topographic mapping due to the short spatial baseline(-100 km) and small intersection angle. In order to...One-sided ascending or descending Synthetic Aperture Radar(SAR) stereoradargrammetry has limited accuracy of topographic mapping due to the short spatial baseline(-100 km) and small intersection angle. In order to improve the performance and reliability of generating digital elevation model(DEM) from spaceborne SAR radargrammetry, an exploration of two-sided stereoradargrammetry from the combination of ascending and descending orbits with geometric configuration of long spatial baseline(-1000 km) was conducted in this study. The slant-range geometry between SAR sensors to the earth surface and the Doppler positioning equations were employed to establish the stereoscopic intersection model. The measurement uncertainty of two-sided radargrammetric elevation was estimated on the basis of radar parallax of homogeneous points between input SAR images. Two stereo-pairs of ALOS/PALSAR(Advanced Land Observing Satellite/Phased Array type L-band Synthetic Aperture Radar) acquisitions with the orbital separation almost 1080 km over the west Sichuan foreland basin with rolling topography in southwestern China were employed in the study to obtain the up-to-date terrain data after the 2008 Wenchuan earthquake that hit this area. Thequantitative accuracy assessment of two-sided radargrammetric DEM was performed with reference to field GPS observations. The experimental results show that the elevation accuracy reaches 5.5 m without ground control points(GCPs) used, and the accuracy is further improved to 1.5 m with only one GPS GCP used as the least constraint. The theoretical analysis and testing results demonstrate that the twosided long baseline SAR radargrammetry from the ascending and descending orbits can be a very promising technical alternative for large-area and high accuracy topographic mapping.展开更多
In order to solve emitter recognition problems in a practical reconnaissance environment, attribute mathematics is introduced. The basic concepts and theory of attribute set and attribute measure are described i n det...In order to solve emitter recognition problems in a practical reconnaissance environment, attribute mathematics is introduced. The basic concepts and theory of attribute set and attribute measure are described i n detail. A new attribute recognition method based on attribute measure is prese nted in this paper. Application example is given, which demonstrates this new me thod is accurate and effective. Moreover, computer simulation for recognizing th e emitter purpose is selected, and compared with classical statistical pattern r ecognition through simulation. The excellent experimental results demonstrate t hat this is a brand-new attribute recognition method as compared to existing st atistical pattern recognition techniques.展开更多
When imaging ocean surface waves by X-band marine radar, the radar backscatter from the sea surface is modulated by the long surface gravity waves. The modulation transfer function (MTF) comprises tilt, hydrodynamic...When imaging ocean surface waves by X-band marine radar, the radar backscatter from the sea surface is modulated by the long surface gravity waves. The modulation transfer function (MTF) comprises tilt, hydrodynamic, and shadowing modulations. A conventional linear MTF was derived using HH-polarized radar observations under conditions of deep water. In this study, we propose a new quadratic polynomial MTF based on W-polarized radar measurements taken from heterogeneous nearshore wave fields. This new MTF is obtained using a radar-observed image spectrum and in situ buoy-measured wave frequency spectrum. We validate the MTF by comparing peak and mean wave periods retrieved from X-band marine radar image sequences with those measured by the buoy. It is shown that the retrieval accuracies of peak and mean wave periods of the new MTF are better than the conventional MTF. The results also show that the bias and root mean square errors of the peak and mean wave periods of the new MTF are 0.05 and 0.88 s, and 0.32 and 0.53 s, respectively, while those of the conventional MTF are 0.61 and 0.98 s, and 1.39 and 1.48 s, respectively. Moreover, it is also shown that the retrieval results are insensitive to the coefficients in the proposed MTF.展开更多
The relationship between the surveying and contro l network(CSN) for earth-orbit satellite and spatial geodesy, and the relationshi p between the CSN for deep space celestial bodies and detectors, and deep space detec...The relationship between the surveying and contro l network(CSN) for earth-orbit satellite and spatial geodesy, and the relationshi p between the CSN for deep space celestial bodies and detectors, and deep space detection are briefly summarized, and so are the basic technical needs of the de ep space surveying and control network(DSN). Then, the techniques, the constitue nts and the distributing of Chinese satellite CSN (CSCSN) and other radio observ ing establishments in China are introduced. Lastly, with the primary CSCSN and o ther observing establishments, some projects for China to rebuild a more perfect CSCSN, and to establish a DSN are analyzed and stated.展开更多
基金Supported by Science and Technology Development Project of Shandong Science and Technology Hall(2010GSF10805)National Natural Science Foundation of China(41140036)~~
文摘[Objective] The paper is to analyze physical quantities and radar parameter of hail shooting and heavy convective rainfall weather. [Method] Using radar data of Jinan station during 2002 and 2008, combined with sounding data, the physical quantities and radar parameter of hail shooting and heavy convective rainfall weather are compared and analyzed. [Result] The smaller Sl is conducive to the generation of hail weather. When K〉 35 ~C, the probability for occurrence of heavy rainfall weather is significantly increased; when K〈20 ^(3, the probability for occurrence of heavy rainfall weather is significantly decreased. When CAPE value is greater than 1 500 J/KG, the probability for occurrence of hail weather is significantly decreased, while the probability for occurrence of heavy rainfall weather is significantly in- creased. The possibility for occurrence of hail monomer is small when the wind shear is less than 5 m/s; and it is large while wind shear is greater than 20 m/s. The radar forecasting indexes of hail monomer is as follows: VIL value reaches 35 kg/m2 (May), 43 kg/m2 (June and July), the monomer height is greater than 9 km, the maximum reflectivity factor is larger than 60 dBz, strong center height reaches 3.3 km (May), 4.3 km (June) and 5.5 km (July); VlL value of heavy rainfall monomer generally is below 25 kg/m2. [Conclusion] The paper provides basis form prediction of hail and heavy rainfall.
基金Project supported by the Specialized Research Fund for the Doctoral Programof Higher Education(No.20030486038) Programfor New Century Ex-cellent Talents in University(NCET-04-0681) +1 种基金the Key Laboratory of Geography Spatial Information ,State Bureau of Surveying and Mapping ( No.1460130424210) the Hubei Provincial Excellent Young Sciencisit Foundation (No.2002AC011) .
文摘In this paper, the performance of median filter, elevation dependent adaptive sigma median filter, and directionally dependent adaptive sigma median filter are tested on both InSAR Tandem DEM and simulated high-level noisy DEM. Through the comparison, the directionally dependent adaptive sigma median filter is proved to be the most effective one not only in the noise removing but also in the boundary preserve.
基金Supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (Nos.KZCX1-YW-12-04,KZCX2-YW-201)the Instrument Developing Project of the Chinese Academy of Sciences (No.YZ200724)
文摘A new ocean wave and sea surface current monitoring system with horizontally-(HH) and vertically-(VV) polarized X-band radar was developed.Two experiments into the use of the radar system were carried out at two sites,respectively,for calibration process in Zhangzi Island of the Yellow Sea,and for validation in the Yellow Sea and South China Sea.Ocean wave parameters and sea surface current velocities were retrieved from the dual polarized radar image sequences based on an inverse method.The results obtained from dual-polarized radar data sets acquired in Zhangzi Island are compared with those from an ocean directional buoy.The results show that ocean wave parameters and sea surface current velocities retrieved from radar image sets are in a good agreement with those observed by the buoy.In particular,it has been found that the vertically-polarized radar is better than the horizontally-polarized radar in retrieving ocean wave parameters,especially in detecting the significant wave height below 1.0 m.
基金Funded by the Key Tenth five Project of State Bureau of Surveying and Mapping (No. 1469990324236 04 06) and the Faculty Research Grant of Uni versity of New South Wales (No. PS03283).
文摘Synthetic aperture radar interferometry (InSAR) has been used as an innovative technique for digital elevation model (DEM) and topographic map generation. In this paper, external DEMs are used for InSAR DEM generation to reduce the errors in data processing. The DEMs generated from repeat-pass InSAR are compared. For steep slopes and severe changes in topography, phase unwrapping quality can be improved by subtracting the phase calculated from an external DEM. It is affirmative that the absolute height accuracy of the InSAR DEM is improved by using external DEM. The data processing was undertaken without the use of ground control points and other manual operation.
文摘For the measurement of vertical profiles of sound speed in the sea using laser excited Brillouin scattering, a high resolution measurement of Brillouin frequency shift is required. In this work, a molecular absorption cell was selected as the frequency shift discriminator and several kinds of absorption gases were tried. It was found that the strong line (#1095) of 127 I 2 at 18783.3297 cm -1 and two absorption lines of 129 I 2 located at the two sides of the #1095 line of 127 I 2 could be used as frequency shift discriminator to detect the changes of the Brillouin frequency shift. This selection is the best one within the range from 532.0131 nm to 532.5154 nm. But it is not perfect and there is a lot of work to do before its practical application.
基金National Key Research and Development Plan(No.2017YFF0204800)Natural Science Foundation of Tianjin(No.17JCQNJC01100)+3 种基金National Natural Science Foundation of China(Nos.61501319,51775377,61505140)Young Elite Scientists Sponsorship Program by Cast of China(No.2016QNRC001)Open Project of Key Laboratory of Micro Opto-electro Mechanical System Technology(No.MOMST2015-7)Open Project from Photoelectric Information and Instrument-Engineering Research Center of Beijing,Tianjin University,Ministry of Education(No.GD2015007)
文摘Light detection and ranging (LIDAR) based on time of flight (TOF) method is widely used in many fields related to distance measurement. LIDAR generally uses laser diode (LD) to emit the pulsed laser with high peak power and short duration to ensure a large distance measurement range and eye safety. To achieve this goal, we propose a pulsed LD drive method producing the drive current with high peak and narrow pulse width. We analyze the key issues and related theories of the drive current generation based on this method and design an LD driver. A model of drive current generation is established and the influence of operating frequency on drive current is discussed. The LD driver is simulated by software and verified by experiments. The working frequency of the driver changes from 20 kHz to 100 kHz and the charging voltage is set at 130 V. The current produced by this driver has a duration of 8.8 ns and a peak of about 35 A, and the peak output optical power of the LD exceeds 75 W.
基金Projects(51678071,51278071)supported by the National Natural Science Foundation of ChinaProjects(14KC06,CX2015BS02)supported by Changsha University of Science&Technology,China
文摘Due to the disturbances arising from the coherence of reflected waves and from echo noise,problems such as limitations,instability and poor accuracy exist with the current quantitative analysis methods.According to the intrinsic features of GPR signals and wavelet time–frequency analysis,an optimal wavelet basis named GPR3.3 wavelet is constructed via an improved biorthogonal wavelet construction method to quantitatively analyse the GPR signal.A new quantitative analysis method based on the biorthogonal wavelet(the QAGBW method)is proposed and applied in the analysis of analogue and measured signals.The results show that compared with the Bayesian frequency-domain blind deconvolution and with existing wavelet bases,the QAGBW method based on optimal wavelet can limit the disturbance from factors such as the coherence of reflected waves and echo noise,improve the quantitative analytical precision of the GPR signal,and match the minimum thickness for quantitative analysis with the vertical resolution of GPR detection.
基金supported by the National Natural Science Foundation of China (NSFC) (Grant No.41127901)the National Basic Research Program of China (973 program,Grant No.2010CB428601)the "100 Technical Talents" Program of the Chinese Academy of Sciences (CAS)
文摘During August 2013,a mobile Rayleigh lidar was deployed in Lhasa,Tibet(29.6°N,91.0°E) for making measurements of middle atmosphere densities and temperatures from 30 to 90 km.In this paper,the authors present the initial results from this scientific campaign,Middle Atmosphere Remote Mobile Observatory in Tibet(MARMOT),and compared the results to the MSIS-00(Mass Spectrometer and Incoherent Scatter) model.This work will advance our understanding of middle atmosphere dynamic processes,especially over the Tibetan Plateau area.
基金supported by the National Hi-Tech Research and Development Program of China (No. 2009AA11Z105)the sponsors of Hanxing Iron Ore Mine Administration Bureau for providing the research funds,insitu test assistance and monitor work
文摘The development and application of the ''digital mine'' concept in China depends heavily upon the use of remote sensing data as well as domestic expertise and awareness. Illegal mining of mineral resources has been a serious long term problem frustrating the Xishimen Iron Ore Mine management. This mine is located in Wu'an county in Hebei province, China. Illegal activities have led to enormous economic losses by interfering with the normal operation of the Xishimen mine and have ruined the surrounding environ- ment and the stability of the Mahe riverbed the crosses the mined area. This paper is based on field recon- naissance taken over many years around the mine area. The ground survey data are integrated with Differential Synthetic Aperture Radar Interferometry (D-InSAR) results from ALOS/PALSAR data to pin- point mining locations. By investigating the relationship between the resulting interferometric deforma- tion pattern and the mining schedule, which is known a priori, areas affected by illegal mining activities are identified. To some extent these areas indicate the location of the illegal site. The results clearly dem- onstrate D-InSAR's ability to cost-effectively monitor illegal mining activities.
基金supported by the National Natural Science Foundation of China(Grant Nos.41472255,51178404)Open Research Fund by Sichuan Engineering Research Center for Emergency Mapping & Disaster Reduction(Program K2014B006)Fundamental Research Funds for the Central Universities(Grant Nos.SWJTU12ZT07,2682014BR014)
文摘One-sided ascending or descending Synthetic Aperture Radar(SAR) stereoradargrammetry has limited accuracy of topographic mapping due to the short spatial baseline(-100 km) and small intersection angle. In order to improve the performance and reliability of generating digital elevation model(DEM) from spaceborne SAR radargrammetry, an exploration of two-sided stereoradargrammetry from the combination of ascending and descending orbits with geometric configuration of long spatial baseline(-1000 km) was conducted in this study. The slant-range geometry between SAR sensors to the earth surface and the Doppler positioning equations were employed to establish the stereoscopic intersection model. The measurement uncertainty of two-sided radargrammetric elevation was estimated on the basis of radar parallax of homogeneous points between input SAR images. Two stereo-pairs of ALOS/PALSAR(Advanced Land Observing Satellite/Phased Array type L-band Synthetic Aperture Radar) acquisitions with the orbital separation almost 1080 km over the west Sichuan foreland basin with rolling topography in southwestern China were employed in the study to obtain the up-to-date terrain data after the 2008 Wenchuan earthquake that hit this area. Thequantitative accuracy assessment of two-sided radargrammetric DEM was performed with reference to field GPS observations. The experimental results show that the elevation accuracy reaches 5.5 m without ground control points(GCPs) used, and the accuracy is further improved to 1.5 m with only one GPS GCP used as the least constraint. The theoretical analysis and testing results demonstrate that the twosided long baseline SAR radargrammetry from the ascending and descending orbits can be a very promising technical alternative for large-area and high accuracy topographic mapping.
文摘In order to solve emitter recognition problems in a practical reconnaissance environment, attribute mathematics is introduced. The basic concepts and theory of attribute set and attribute measure are described i n detail. A new attribute recognition method based on attribute measure is prese nted in this paper. Application example is given, which demonstrates this new me thod is accurate and effective. Moreover, computer simulation for recognizing th e emitter purpose is selected, and compared with classical statistical pattern r ecognition through simulation. The excellent experimental results demonstrate t hat this is a brand-new attribute recognition method as compared to existing st atistical pattern recognition techniques.
基金Supported by the National High Technology Research and Development Program of China(863 Program)(No.2013AA09A505)the National Natural Science Foundation of China(Nos.41076119,41176160,41476158)+4 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the Natural Science Youth Foundation of Jiangsu Province(No.BK2012467)the Natural Science State Key Foundation of Jiangsu Province(No.BK2011008)the National Natural Science Youth Foundation of China(No.41206171)the Startup Foundation for Introducing Talent of Nanjing University of Information Science and Technology(No.S8113078001)
文摘When imaging ocean surface waves by X-band marine radar, the radar backscatter from the sea surface is modulated by the long surface gravity waves. The modulation transfer function (MTF) comprises tilt, hydrodynamic, and shadowing modulations. A conventional linear MTF was derived using HH-polarized radar observations under conditions of deep water. In this study, we propose a new quadratic polynomial MTF based on W-polarized radar measurements taken from heterogeneous nearshore wave fields. This new MTF is obtained using a radar-observed image spectrum and in situ buoy-measured wave frequency spectrum. We validate the MTF by comparing peak and mean wave periods retrieved from X-band marine radar image sequences with those measured by the buoy. It is shown that the retrieval accuracies of peak and mean wave periods of the new MTF are better than the conventional MTF. The results also show that the bias and root mean square errors of the peak and mean wave periods of the new MTF are 0.05 and 0.88 s, and 0.32 and 0.53 s, respectively, while those of the conventional MTF are 0.61 and 0.98 s, and 1.39 and 1.48 s, respectively. Moreover, it is also shown that the retrieval results are insensitive to the coefficients in the proposed MTF.
文摘The relationship between the surveying and contro l network(CSN) for earth-orbit satellite and spatial geodesy, and the relationshi p between the CSN for deep space celestial bodies and detectors, and deep space detection are briefly summarized, and so are the basic technical needs of the de ep space surveying and control network(DSN). Then, the techniques, the constitue nts and the distributing of Chinese satellite CSN (CSCSN) and other radio observ ing establishments in China are introduced. Lastly, with the primary CSCSN and o ther observing establishments, some projects for China to rebuild a more perfect CSCSN, and to establish a DSN are analyzed and stated.