Using the single-point ground wave (GW) radar data at Shensi Station and the water level data at three stations (Shengsi, Luchaogang and Daishan), the authors obtained the flow vectors from the radial velocity of ...Using the single-point ground wave (GW) radar data at Shensi Station and the water level data at three stations (Shengsi, Luchaogang and Daishan), the authors obtained the flow vectors from the radial velocity of GW radar observation, and calculate four sub-tidal harmonic constants (O1, K1, M2 and S2). The tidal characteristics derived from the GW radar dataset agreed well with those from the tidal gauge data. The authors also analyzed the tidal energy flux and tidal energy dissipation rate. There was a good relationship between the tidal energy dissipation rate and topography. The study showed a good way to calculate tidal energy dissipation rate using GW radar data.展开更多
Due to long-term over-exploitation of groundwater in Beijing Municipality, regional groundwater funnels have formed and land subsidence has been induced. By combining a groundwater monitoring network, GPS monitor- ing...Due to long-term over-exploitation of groundwater in Beijing Municipality, regional groundwater funnels have formed and land subsidence has been induced. By combining a groundwater monitoring network, GPS monitor- ing network data, radar satellite SAR data, GIS and other new technologies, a coupled process model based on the dy- namic variation of groundwater and the deformation response of land subsidence has been established. The dynamic variation of groundwater fimnels and the land subsidence response process were analyzed systematically in Beijing. Study results indicate that current groundwater funnel areas are distributed mainly in the southwest of Shunyi District, the northeast of Chaoyang District and the northwest of Tongzhou District, with an average decline rate of groundwa- ter level of 2.66 rn/yr and a maximum of 3.82 m/yr in the center of the funnels. Seasonal and interannual differences exist in the response model of land subsidence to groundwater funnels with uneven spatial and temporal distribution, where the maximum land subsidence rate was about --41.08 mm/yr and the area with a subsidence rate greater than 30 mm/yr was about 1637.29 km2. Although a consistency was revealed to exist between a groundwater funnel and the spatial distribution characteristics of the corresponding land subsidence funnel, this consistency was not perfect. The results showed that the response model of land subsidence to the dynamic variation of groundwater was more revealing when combining conventional technologies with InSAR, GIS, GPS, providing a new strategy for environmental and hydrogeological research and a scientific basis for regional land subsidence control.展开更多
A Multi-channel Oceanographic Fluorescence Lidar(MOFL), with a UV excitation at 355 nm and multiple receiving channels at typical wavelengths of fluorescence from oil spills and chlorophyll-a(Chl-a), has been develope...A Multi-channel Oceanographic Fluorescence Lidar(MOFL), with a UV excitation at 355 nm and multiple receiving channels at typical wavelengths of fluorescence from oil spills and chlorophyll-a(Chl-a), has been developed using the Laser- induced Fluorescence(LIF) technique. The sketch of the MOFL system equipped with a compact multi-channel photomultiplier tube(MPMT) is introduced in the paper. The methods of differentiating the oil fluorescence from the background water fluorescence and evaluating the Chl-a concentration are described. Two field experiments were carried out to investigate the field performance of the system, i.e., an experiment in coastal areas for oil pollution detection and an experiment over the Yellow Sea for Chl-a monitoring. In the coastal experiment, several oil samples and other fluorescence substances were used to analyze the fluorescence spectral characteristics for oil identification, and to estimate the thickness of oil films at the water surface. The experiment shows that both the spectral shape of fluorescence induced from surface water and the intensity ratio of two channels(I495/I405) are essential to determine oil-spill occurrence. In the airborne experiment, MOFL was applied to measure relative Chl-a concentrations in the upper layer of the ocean. A comparison of relative Chl-a concentration measurements by MOFL and the Moderate Resolution Imaging Spectroradiometer(MODIS) indicates that the two datasets are in good agreement. The results show that the MOFL system is capable of monitoring oil spills and Chl-a in the upper layer of ocean water.展开更多
AT-InSAR(Along Track Interferometric SAR) is a technique to detect slow-moving targets. However, the detection performance is greatly influenced by noise and clutter. In this paper, the influence of noise and clutter ...AT-InSAR(Along Track Interferometric SAR) is a technique to detect slow-moving targets. However, the detection performance is greatly influenced by noise and clutter. In this paper, the influence of noise and clutter on the detecting performance is analyzed. By simulating different background clutter and noise, the performances of the phase threshold and dual-threshold methods are discussed in detail, and then the adaptive-threshold method is proposed which can greatly improve the detection performance.展开更多
The lightning very high frequency (VHF) radiation location system based on the short-baseline time-difference of arrival (TDOA) technique provides an effective approach to describe the temporal and spatial develop...The lightning very high frequency (VHF) radiation location system based on the short-baseline time-difference of arrival (TDOA) technique provides an effective approach to describe the temporal and spatial development of lightning discharge in two dimensions with high resolution. A negative single-stroke cloud-to- ground (CG) lightning flash was analyzed in detail using the radiation location results and synchronic fast/slow elec- tric field changes. The long-duration preliminary break- down process appeared to propagate with hi-directional leader channels. The two negative simultaneous discharge channels sloped down with a considerable horizontal com- ponent in the lower positive charge region at speeds of about 105 m s-1. The stepped leader was clearly converted from one channel of the preliminary breakdown process and spread downwards with branches. The speeds of the stepped leaders were about 105 m s -1. The K processes after the return stroke could either directly initiate from the start region with negative polarity lightning discharge, or initiate from a new region in the cloud as negative recoil streamers. All K processes propagated along the preceding electrified channel, while not all K processes initiated from the tips of positive breakdowns. The speeds of the K processes were about 106-107 m s-1.展开更多
Separation process undertaken in packed columns often displays anisotropic turbulent mass diffusion. The anisotropic turbulent mass diffusion can be characterized rigorously by using the Reynolds mass flux(RMF) model....Separation process undertaken in packed columns often displays anisotropic turbulent mass diffusion. The anisotropic turbulent mass diffusion can be characterized rigorously by using the Reynolds mass flux(RMF) model.With the RMF model, the concentration and temperature as well as the velocity distributions can be simulated numerically. The modeled Reynolds mass flux equation is adopted to close the turbulent mass transfer equation,while the modeled Reynolds heat flux and Reynolds stress equations are used to close the turbulent heat and momentum transfer equations, so that the Boussinesq postulate and the isotropic assumption are abandoned. To validate the presented RMF model, simulation is carried out for CO2 absorption into aqueous Na OH solutions in a packed column(0.1 m id, packed with 12.7 mm Berl saddles up to a height of 6.55 m). The simulated results are compared with the experimental data and satisfactory agreement is found both in concentration and temperature distributions. The sequel Part II extends the model application to the simulation of an unsteady state adsorption process in a packed column.展开更多
Ventilation system analysis for underground mines has remained mostly unchanged since the Atkinson method was made popular by Mc Elroy in 1935. Data available to ventilation technicians and engineers is typically limi...Ventilation system analysis for underground mines has remained mostly unchanged since the Atkinson method was made popular by Mc Elroy in 1935. Data available to ventilation technicians and engineers is typically limited to the quantity of air moving through any given heading. Because computer-aided modelling, simulation, and ventilation system design tools have improved, it is now important to ensure that developed models have the most accurate information possible. This paper presents a new technique for estimating underground drift friction factors that works by processing 3 D point cloud data obtained by using a mobile Li DAR. Presented are field results that compare the proposed approach with previously published algorithms, as well as with manually acquired measurements.展开更多
Based on the VHF lightning locating system,a three-dimensional-space cell-gridded approach is used to extract the lighting channel and calculate the length of the channel.Through clustering of the located radiation so...Based on the VHF lightning locating system,a three-dimensional-space cell-gridded approach is used to extract the lighting channel and calculate the length of the channel.Through clustering of the located radiation sources and then extracting the lightning channel,it can accurately obtain the length of the channel.To validate the feasibility of the approach,a simulation experiment is designed,and it shows the length error is no more than 10%.The relationship between the NO production of per unit arc length and atmospheric pressure obtained in laboratory is applied to the NOX production of per unit flash length at different altitudes in this paper.The channel length and the NOX production of 11 negative cloud-to-ground flashes and 59 intracloud flashes in an isolated thunderstorm in the northeastern Qinghai-Tibet Plateau are calculated.The results show that the average channel lengths of per cloud-to-ground and intracloud flash are 28.9 and 22.3 km respectively;the average NOX productions of per cloud-to-ground and intracloud flash are 1.89×1025 and 0.42×1025 molecules,respectively.展开更多
Numerical results of three-dimensional separated flow and heat transfer in an enlarged rectangular channel are presented in this paper.The expansion ratio and aspect ratio of the channel are 2.0 and 16.0,respectively....Numerical results of three-dimensional separated flow and heat transfer in an enlarged rectangular channel are presented in this paper.The expansion ratio and aspect ratio of the channel are 2.0 and 16.0,respectively.Reynolds number of the flow is 200 and it is over the critical Reynolds number.Over the critical Reynolds number,the flow in the symmetric channel becomes asymmetric and deflects to one side of the walls.Effects of the pulsating fluctuation at the inlet upon the flow in the channel are investigated.It is clarified that the inlet flow with a pulsating fluctuation of Strouhal number 0.05 and 0.10 strongly affects on the flow in the channel,and heat transfer on the walls is enhanced,especially on the wall surface covered with long separation bubble.On the other hand,the pulsation of St=0.0125 oscillates the shear layer more weakly than that of St=0.05,0.10 and the enhancement of heat transfer is smaller,though some vortices are shed from the vicinity of the side wall near the reattachment region.The oscillation of the main flow calms down gradually as the Strouhal number of the pulsation increases over 0.10.The influence of pulsation of St=0.20 on the flow is restricted in the near downstream of the step,and heat transfer on the walls is almost similar to that of the steady flow in the channel.展开更多
Microfluidic droplets have emerged as novel platforms for chemical and biological applications. Manipulation of droplets has thus attracted increasing attention. Different from solid particles, deformable droplets can...Microfluidic droplets have emerged as novel platforms for chemical and biological applications. Manipulation of droplets has thus attracted increasing attention. Different from solid particles, deformable droplets cannot be efficiently controlled by inertia-driven approaches. Here, we report a study on the lateral migration of dual droplet trains in a double spiral microchannel at low Reynolds numbers. The dominant driving mechanism is elucidated as wall effect originated from the droplet deformation. Three types of migration modes are observed with varying Reynolds numbers and the size-dependent mode is intensively investigated. We obtain empirical formulas by relating the migration to Reynolds numbers and droplet sizes. The effect of droplet deformability on the migration and the detailed migration behavior along the double spiral channel are discussed. Numerical simulations are also performed and yielded in qualitative agreement with the experiments. could be a promising alternative to existing inertia-driven approaches bio-particles. This proposed low Re approach based on lateral migration especially concerning deformable entities and susceptible展开更多
Peristaltic flow of magnetohydrodynamic (MHD) Williamson fluid in a symmetric chan- nel is addressed. Modeling is given with Sorer and Dufour effects. Channel walls have compliant properties. Analysis has been carri...Peristaltic flow of magnetohydrodynamic (MHD) Williamson fluid in a symmetric chan- nel is addressed. Modeling is given with Sorer and Dufour effects. Channel walls have compliant properties. Analysis has been carried out through long wavelength and low Reynolds number approach. The obtained series solutions for small Weissenberg number are developed. Impact of variables reflecting the salient features of wall properties, Blot numbers and Soret and Dufour on the velocity, temperature and concentration has been point out. Trapping phenomenon is also analyzed.展开更多
The work deals with numerical modelling of turbulent flows in channels with an expansion of the cross-section where flow separation and reattachment occur. The performance of several eddy viscosity models and an expli...The work deals with numerical modelling of turbulent flows in channels with an expansion of the cross-section where flow separation and reattachment occur. The performance of several eddy viscosity models and an explicit algebraic Reynolds stress model (EARSM) is studied. The used test cases are flows in channels with various backward facing steps where the step is perpendicular or inclined and the top wall is parallel or deflected. Furthermore, a channel with the circular ramp is considered. The numerical solution is achieved by the finite volume method or by the finite element method. The results of both numerical approaches are compared.展开更多
A challenge in the study of turbulent boundary layers(TBLs) is to understand the non-equilibrium relaxation process after separation and reattachment due to shock-wave/boundary-layer interaction. The classical boundar...A challenge in the study of turbulent boundary layers(TBLs) is to understand the non-equilibrium relaxation process after separation and reattachment due to shock-wave/boundary-layer interaction. The classical boundary layer theory cannot deal with the strong adverse pressure gradient, and hence, the computational modeling of this process remains inaccurate. Here, we report the direct numerical simulation results of the relaxation TBL behind a compression ramp, which reveal the presence of intense large-scale eddies, with significantly enhanced Reynolds stress and turbulent heat flux. A crucial finding is that the wall-normal profiles of the excess Reynolds stress and turbulent heat flux obey a β-distribution, which is a product of two power laws with respect to the wall-normal distances from the wall and from the boundary layer edge. In addition, the streamwise decays of the excess Reynolds stress and turbulent heat flux also exhibit power laws with respect to the streamwise distance from the corner of the compression ramp. These results suggest that the relaxation TBL obeys the dilation symmetry, which is a specific form of self-organization in this complex non-equilibrium flow. The β-distribution yields important hints for the development of a turbulence model.展开更多
基金supported by projects (No. 40976012 and No. 40906030)
文摘Using the single-point ground wave (GW) radar data at Shensi Station and the water level data at three stations (Shengsi, Luchaogang and Daishan), the authors obtained the flow vectors from the radial velocity of GW radar observation, and calculate four sub-tidal harmonic constants (O1, K1, M2 and S2). The tidal characteristics derived from the GW radar dataset agreed well with those from the tidal gauge data. The authors also analyzed the tidal energy flux and tidal energy dissipation rate. There was a good relationship between the tidal energy dissipation rate and topography. The study showed a good way to calculate tidal energy dissipation rate using GW radar data.
基金Under the auspices of Program of International S&T Cooperation (No. 2010DFA92400)Non-profit Industry Financial Program of the Ministry of Water Resources (No. 200901091)+2 种基金Beijing Municipal Natural Science Foundation (No. 8101002)Beijing Municipal Education Commission Plans to Focus Science and Technology Projects (No. KZ201010028030)National Natural Science Foundation of China (No. 41130744,41171335)
文摘Due to long-term over-exploitation of groundwater in Beijing Municipality, regional groundwater funnels have formed and land subsidence has been induced. By combining a groundwater monitoring network, GPS monitor- ing network data, radar satellite SAR data, GIS and other new technologies, a coupled process model based on the dy- namic variation of groundwater and the deformation response of land subsidence has been established. The dynamic variation of groundwater fimnels and the land subsidence response process were analyzed systematically in Beijing. Study results indicate that current groundwater funnel areas are distributed mainly in the southwest of Shunyi District, the northeast of Chaoyang District and the northwest of Tongzhou District, with an average decline rate of groundwa- ter level of 2.66 rn/yr and a maximum of 3.82 m/yr in the center of the funnels. Seasonal and interannual differences exist in the response model of land subsidence to groundwater funnels with uneven spatial and temporal distribution, where the maximum land subsidence rate was about --41.08 mm/yr and the area with a subsidence rate greater than 30 mm/yr was about 1637.29 km2. Although a consistency was revealed to exist between a groundwater funnel and the spatial distribution characteristics of the corresponding land subsidence funnel, this consistency was not perfect. The results showed that the response model of land subsidence to the dynamic variation of groundwater was more revealing when combining conventional technologies with InSAR, GIS, GPS, providing a new strategy for environmental and hydrogeological research and a scientific basis for regional land subsidence control.
基金supported by the National High Technology Research and Development Program (2006AA06Z415)the Global Change Research Program of China (2012CB955603)
文摘A Multi-channel Oceanographic Fluorescence Lidar(MOFL), with a UV excitation at 355 nm and multiple receiving channels at typical wavelengths of fluorescence from oil spills and chlorophyll-a(Chl-a), has been developed using the Laser- induced Fluorescence(LIF) technique. The sketch of the MOFL system equipped with a compact multi-channel photomultiplier tube(MPMT) is introduced in the paper. The methods of differentiating the oil fluorescence from the background water fluorescence and evaluating the Chl-a concentration are described. Two field experiments were carried out to investigate the field performance of the system, i.e., an experiment in coastal areas for oil pollution detection and an experiment over the Yellow Sea for Chl-a monitoring. In the coastal experiment, several oil samples and other fluorescence substances were used to analyze the fluorescence spectral characteristics for oil identification, and to estimate the thickness of oil films at the water surface. The experiment shows that both the spectral shape of fluorescence induced from surface water and the intensity ratio of two channels(I495/I405) are essential to determine oil-spill occurrence. In the airborne experiment, MOFL was applied to measure relative Chl-a concentrations in the upper layer of the ocean. A comparison of relative Chl-a concentration measurements by MOFL and the Moderate Resolution Imaging Spectroradiometer(MODIS) indicates that the two datasets are in good agreement. The results show that the MOFL system is capable of monitoring oil spills and Chl-a in the upper layer of ocean water.
文摘AT-InSAR(Along Track Interferometric SAR) is a technique to detect slow-moving targets. However, the detection performance is greatly influenced by noise and clutter. In this paper, the influence of noise and clutter on the detecting performance is analyzed. By simulating different background clutter and noise, the performances of the phase threshold and dual-threshold methods are discussed in detail, and then the adaptive-threshold method is proposed which can greatly improve the detection performance.
基金supported by the Instrument Developing Project of the Chinese Academy of Sciences (Grant No.YZ201206)the National Natural Science Foundation of China (Grant Nos.40930949 and 41175002)National Science and Technology Support Project (Grant No.2008BAC36B03)
文摘The lightning very high frequency (VHF) radiation location system based on the short-baseline time-difference of arrival (TDOA) technique provides an effective approach to describe the temporal and spatial development of lightning discharge in two dimensions with high resolution. A negative single-stroke cloud-to- ground (CG) lightning flash was analyzed in detail using the radiation location results and synchronic fast/slow elec- tric field changes. The long-duration preliminary break- down process appeared to propagate with hi-directional leader channels. The two negative simultaneous discharge channels sloped down with a considerable horizontal com- ponent in the lower positive charge region at speeds of about 105 m s-1. The stepped leader was clearly converted from one channel of the preliminary breakdown process and spread downwards with branches. The speeds of the stepped leaders were about 105 m s -1. The K processes after the return stroke could either directly initiate from the start region with negative polarity lightning discharge, or initiate from a new region in the cloud as negative recoil streamers. All K processes propagated along the preceding electrified channel, while not all K processes initiated from the tips of positive breakdowns. The speeds of the K processes were about 106-107 m s-1.
基金Supported by the National Natural Science Foundation of China(21376163)
文摘Separation process undertaken in packed columns often displays anisotropic turbulent mass diffusion. The anisotropic turbulent mass diffusion can be characterized rigorously by using the Reynolds mass flux(RMF) model.With the RMF model, the concentration and temperature as well as the velocity distributions can be simulated numerically. The modeled Reynolds mass flux equation is adopted to close the turbulent mass transfer equation,while the modeled Reynolds heat flux and Reynolds stress equations are used to close the turbulent heat and momentum transfer equations, so that the Boussinesq postulate and the isotropic assumption are abandoned. To validate the presented RMF model, simulation is carried out for CO2 absorption into aqueous Na OH solutions in a packed column(0.1 m id, packed with 12.7 mm Berl saddles up to a height of 6.55 m). The simulated results are compared with the experimental data and satisfactory agreement is found both in concentration and temperature distributions. The sequel Part II extends the model application to the simulation of an unsteady state adsorption process in a packed column.
基金supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) under grant CRDPJ 44580412Barrick Gold Corporation and Peck Tech Consulting Ltd
文摘Ventilation system analysis for underground mines has remained mostly unchanged since the Atkinson method was made popular by Mc Elroy in 1935. Data available to ventilation technicians and engineers is typically limited to the quantity of air moving through any given heading. Because computer-aided modelling, simulation, and ventilation system design tools have improved, it is now important to ensure that developed models have the most accurate information possible. This paper presents a new technique for estimating underground drift friction factors that works by processing 3 D point cloud data obtained by using a mobile Li DAR. Presented are field results that compare the proposed approach with previously published algorithms, as well as with manually acquired measurements.
基金supported by the National Natural Science Foundation of Chi-na(Grant Nos.41075002,40775004,41030960)R&D Special Fund for Public Welfare Industry(Meteorology)(Grant No.GYHY201006005-03)
文摘Based on the VHF lightning locating system,a three-dimensional-space cell-gridded approach is used to extract the lighting channel and calculate the length of the channel.Through clustering of the located radiation sources and then extracting the lightning channel,it can accurately obtain the length of the channel.To validate the feasibility of the approach,a simulation experiment is designed,and it shows the length error is no more than 10%.The relationship between the NO production of per unit arc length and atmospheric pressure obtained in laboratory is applied to the NOX production of per unit flash length at different altitudes in this paper.The channel length and the NOX production of 11 negative cloud-to-ground flashes and 59 intracloud flashes in an isolated thunderstorm in the northeastern Qinghai-Tibet Plateau are calculated.The results show that the average channel lengths of per cloud-to-ground and intracloud flash are 28.9 and 22.3 km respectively;the average NOX productions of per cloud-to-ground and intracloud flash are 1.89×1025 and 0.42×1025 molecules,respectively.
基金These results were partly obtained with a supercomputer SX-9 of Cyberscience Center,Tohoku University
文摘Numerical results of three-dimensional separated flow and heat transfer in an enlarged rectangular channel are presented in this paper.The expansion ratio and aspect ratio of the channel are 2.0 and 16.0,respectively.Reynolds number of the flow is 200 and it is over the critical Reynolds number.Over the critical Reynolds number,the flow in the symmetric channel becomes asymmetric and deflects to one side of the walls.Effects of the pulsating fluctuation at the inlet upon the flow in the channel are investigated.It is clarified that the inlet flow with a pulsating fluctuation of Strouhal number 0.05 and 0.10 strongly affects on the flow in the channel,and heat transfer on the walls is enhanced,especially on the wall surface covered with long separation bubble.On the other hand,the pulsation of St=0.0125 oscillates the shear layer more weakly than that of St=0.05,0.10 and the enhancement of heat transfer is smaller,though some vortices are shed from the vicinity of the side wall near the reattachment region.The oscillation of the main flow calms down gradually as the Strouhal number of the pulsation increases over 0.10.The influence of pulsation of St=0.20 on the flow is restricted in the near downstream of the step,and heat transfer on the walls is almost similar to that of the steady flow in the channel.
基金supported by the National Natural Science Foundation of China(Grant Nos.11572334,11272321 and 11402274)
文摘Microfluidic droplets have emerged as novel platforms for chemical and biological applications. Manipulation of droplets has thus attracted increasing attention. Different from solid particles, deformable droplets cannot be efficiently controlled by inertia-driven approaches. Here, we report a study on the lateral migration of dual droplet trains in a double spiral microchannel at low Reynolds numbers. The dominant driving mechanism is elucidated as wall effect originated from the droplet deformation. Three types of migration modes are observed with varying Reynolds numbers and the size-dependent mode is intensively investigated. We obtain empirical formulas by relating the migration to Reynolds numbers and droplet sizes. The effect of droplet deformability on the migration and the detailed migration behavior along the double spiral channel are discussed. Numerical simulations are also performed and yielded in qualitative agreement with the experiments. could be a promising alternative to existing inertia-driven approaches bio-particles. This proposed low Re approach based on lateral migration especially concerning deformable entities and susceptible
文摘Peristaltic flow of magnetohydrodynamic (MHD) Williamson fluid in a symmetric chan- nel is addressed. Modeling is given with Sorer and Dufour effects. Channel walls have compliant properties. Analysis has been carried out through long wavelength and low Reynolds number approach. The obtained series solutions for small Weissenberg number are developed. Impact of variables reflecting the salient features of wall properties, Blot numbers and Soret and Dufour on the velocity, temperature and concentration has been point out. Trapping phenomenon is also analyzed.
基金supported by Grant Number 103/09/0977 of Czech Science FoundationResearch Plans of MSMT No. 6840770010 and No. AV0Z207 60514
文摘The work deals with numerical modelling of turbulent flows in channels with an expansion of the cross-section where flow separation and reattachment occur. The performance of several eddy viscosity models and an explicit algebraic Reynolds stress model (EARSM) is studied. The used test cases are flows in channels with various backward facing steps where the step is perpendicular or inclined and the top wall is parallel or deflected. Furthermore, a channel with the circular ramp is considered. The numerical solution is achieved by the finite volume method or by the finite element method. The results of both numerical approaches are compared.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11452002, 11372008, and 11521091)the Aeronautical Science Foundation of China (Grant No. 2014ZA71001)
文摘A challenge in the study of turbulent boundary layers(TBLs) is to understand the non-equilibrium relaxation process after separation and reattachment due to shock-wave/boundary-layer interaction. The classical boundary layer theory cannot deal with the strong adverse pressure gradient, and hence, the computational modeling of this process remains inaccurate. Here, we report the direct numerical simulation results of the relaxation TBL behind a compression ramp, which reveal the presence of intense large-scale eddies, with significantly enhanced Reynolds stress and turbulent heat flux. A crucial finding is that the wall-normal profiles of the excess Reynolds stress and turbulent heat flux obey a β-distribution, which is a product of two power laws with respect to the wall-normal distances from the wall and from the boundary layer edge. In addition, the streamwise decays of the excess Reynolds stress and turbulent heat flux also exhibit power laws with respect to the streamwise distance from the corner of the compression ramp. These results suggest that the relaxation TBL obeys the dilation symmetry, which is a specific form of self-organization in this complex non-equilibrium flow. The β-distribution yields important hints for the development of a turbulence model.