期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Analysis of atmospheric turbulence in the upper layers of sea fog 被引量:5
1
作者 李永平 郑运霞 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2015年第3期809-818,共10页
Atmospheric turbulence plays a vital role in the formation and dissipation of fog. However,studies of such turbulence are typically limited to observations with ultrasonic anemometers less than 100 m above ground. Thu... Atmospheric turbulence plays a vital role in the formation and dissipation of fog. However,studies of such turbulence are typically limited to observations with ultrasonic anemometers less than 100 m above ground. Thus,the turbulence characteristics of upper fog layers are poorly known. In this paper,we present 4-layers of data,measured by ultrasonic anemometers on a wind tower about 400 m above the sea surface; we use these data to characterize atmospheric turbulence atop a heavy sea fog. Large differences in turbulence during the sea fog episode were recorded. Results showed that the kinetic energy,momentum flux,and sensible heat flux of turbulence increased rapidly during the onset of fog. After onset,high turbulence was observed within the uppermost fog layer. As long as this turbulence did not exceed a critical threshold,it was crucial to enhancing the cooling rate,and maintaining the fog. Vertical momentum flux and sensible heat flux generated by this turbulence weakened wind speed and decreased air temperature during the fog. Towards the end of the fog episode,the vertical distribution of sensible heat flux reversed,contributing to a downward momentum flux in all upper layers. Spatial and temporal scales of the turbulence eddy were greater before and after the fog,than during the fog episode. Turbulence energy was greatest in upper levels,around 430 m and 450 m above mean sea level(AMSL),than in lower levels of the fog(390 m and 410 m AMSL); turbulence energy peaked along the mean wind direction. Our results show that the status of turbulence was complicated within the fog; turbulence caused fluxes of momentum and sensible heat atop the fog layer,affecting the underlying fog by decreasing or increasing average wind speed,as well as promoting or demoting air temperature stratification. 展开更多
关键词 ultrasonic anemometers turbulence characteristics momentum flux sensible heat flux variation in sea fog
下载PDF
Spray Characteristics Study of Combined Trapezoid Spray Tray
2
作者 He Liang Li Chunli +1 位作者 Liu Jidong Xie Zhenshan 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2014年第3期104-110,共7页
The spray behaviors of the combined trapezoid spray tray(CTST) have a significant effect on the gas-liquid interface. In this paper, the spray process of CTST in a column, 570 mm in diameter, was experimentally invest... The spray behaviors of the combined trapezoid spray tray(CTST) have a significant effect on the gas-liquid interface. In this paper, the spray process of CTST in a column, 570 mm in diameter, was experimentally investigated by using a high-speed camera, and a theoretical model of the average droplet size was established according to the unstable wave theory. The results demonstrated that gas velocity passing through the hole is the key factor affecting the spray angle, which increases gradually with an increase in the gas velocity. When the gas velocity exceeds 7.5 m/s, the spray angle becomes stable at around 55°. The average flow velocity of the liquid sheet at the spray-hole increases significantly with an increase in the gas velocity, and decreases slightly with an increase in the liquid flow rate; moreover, it increases from the bottom of spray hole upward to the top. The density of liquid drops distribution in the spray area can be described by the RosinRammler function. In addition, the liquid drops are mainly concentrated in the area of spray angle ranging from 20° to 40°, and they gradually become uniform with the increase in the gas velocity and the liquid flow rate. The average liquid drop size deceases with an increase in the gas velocity, and increases slightly with an increasing liquid flow rate. In the normal working range, the average liquid drop size is about 1.0 mm to 2.5 mm in diameter. 展开更多
关键词 CTST spray angle gas velocity distribution density average flow velocity of liquid sheet droplet size
下载PDF
以色列 自由至上
3
作者 杨过小穆 《世界》 2015年第12期60-65,共6页
现在,“以色列”这个名字终于要从抽象的文字变成我眼前的现实。Harel,一个帅气的犹太小伙,在机场接上我。Harel在大学学的考古专业,我们一起驱车沿着1号公路前行.以色列的轮廓渐渐越来越清晰。
关键词 以色列 死海 雾气量 地质
原文传递
Air pumping for alleviation of heavy smog in Beijing
4
作者 Yaping SHAO Sven ULBRICH Dehui CHEN 《Science China Earth Sciences》 SCIE EI CAS CSCD 2018年第7期973-979,共7页
Beijing often suffers under heavy smog.During such events which occur mostly in autumn and winter,people are desperate for fresh air.The formation of heavy smog is due to foremost human induced air pollution,but geogr... Beijing often suffers under heavy smog.During such events which occur mostly in autumn and winter,people are desperate for fresh air.The formation of heavy smog is due to foremost human induced air pollution,but geographic and meteorological conditions,especially below a surface inversion,play an important role.We propose to destroy the inversion by pumping air from above the inversion layer to the surface layer to alleviate the severity of the smog.While long-term air quality improvement depends on the reduction of air pollution emission,air pumping may provide relief in the interim for the Beijing citizens.We estimate that an air pumping at a rate 2×10~7m^3s^(–1)can lead to significantly improved air quality in Beijing,due to(1)direct clean air input;(2)increased instability and vertical mixing and(3)a positive radiation-mixing feedback.The pumping requires an energy input of 10 GW,comparable with the energy consumption in Beijing for air conditioning in summer.We propose to use wind energy from Inner Mongolia for the pumping,which has currently an installed wind energy capacity of 70GW. 展开更多
关键词 Beijing air quality Air pumping Numerical modelling INVERSION
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部