期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
低品质余热蒸发雾滴冷却空气压缩方法 被引量:5
1
作者 贾冠伟 许未晴 +2 位作者 郑海务 石岩 蔡茂林 《液压与气动》 北大核心 2021年第7期58-64,共7页
工业余热主要集中于能源密集型行业,量大且利用率低或直接排放;同时,压缩空气广泛且大量应用于能源密集型行业,能耗消耗量大。结合二者各自特点,以工业低品质余热产生水蒸气进而凝结产生雾滴为出发点,在压缩时向压缩空气中喷入微米级水... 工业余热主要集中于能源密集型行业,量大且利用率低或直接排放;同时,压缩空气广泛且大量应用于能源密集型行业,能耗消耗量大。结合二者各自特点,以工业低品质余热产生水蒸气进而凝结产生雾滴为出发点,在压缩时向压缩空气中喷入微米级水雾,吸收压缩空气的压缩热,减小压缩空气温升,实现近等温压缩。对比蒸气凝结产生雾滴的功率与高压产生雾滴的功率,得出水蒸气凝结雾滴的压缩节能效率更接近于等温压缩节能效率。通过余热回收和水蒸气冷却凝结雾滴的方式能够提高压缩空气制取的能源效率,降低企业生产压缩空气成本,减少工业二氧化碳排放,改善气候环境。 展开更多
关键词 低品质余热 蒸气凝结 雾滴冷却 空气压缩 节能效率
下载PDF
Numerical Simulation of Duct Flow with Fog Droplets 被引量:1
2
作者 Abhilash Suryan J. K. Lee +1 位作者 D. S. Kim H. D. Kim 《Journal of Thermal Science》 SCIE EI CAS CSCD 2010年第6期533-539,共7页
Evaporative cooling is a widely used air cooling technique. In this method, evaporation of a liquid in the surrounding air cools the air in contact with it. In the current investigation, numerical simulations are card... Evaporative cooling is a widely used air cooling technique. In this method, evaporation of a liquid in the surrounding air cools the air in contact with it. In the current investigation, numerical simulations are carded out to visualize the evaporation and dynamics of tiny water droplets of different diameters in a long air duct. The effect of initial droplet size on the temperature and relative humidity distribution of the air stream in the duct is investigated. Three different initial conditions of air are considered to verify the influence of ambient conditions. Droplet spray patterns are also analyzed to identify the suitable locations for the spray nozzles within the duct. The resuits obtained are displayed in a series of plots to provide a clear understanding of the evaporative cooling process as well as the droplet dynamics within the ducts. 展开更多
关键词 Evaporative cooling Fog droplet Two-phase flow Relative humidity
原文传递
Numerical Investigation on Super-cooled Large Droplet Icing of Fan Rotor Blade in Jet Engine
3
作者 Keisuke Isobe Masaya Suzuki Makoto Yamamoto 《Journal of Thermal Science》 SCIE EI CAS CSCD 2014年第5期432-437,共6页
Icing(or ice accretion) is a phenomenon in which super-cooled water droplets impinge and accrete on a body.It is well known that ice accretion on blades and vanes leads to performance degradation and has caused severe... Icing(or ice accretion) is a phenomenon in which super-cooled water droplets impinge and accrete on a body.It is well known that ice accretion on blades and vanes leads to performance degradation and has caused severe accidents.Although various anti-icing and deicing systems have been developed,such accidents still occur.Therefore,it is important to clarify the phenomenon of ice accretion on an aircraft and in a jet engine.However,flight tests for ice accretion are very expensive,and in the wind tunnel it is difficult to reproduce all climate conditions where ice accretion can occur.Therefore,it is expected that computational fluid dynamics(CFD),which can estimate ice accretion in various climate conditions,will be a useful way to predict and understand the ice accretion phenomenon.On the other hand,although the icing caused by super-cooled large droplets(SLD) is very dangerous,the numerical method has not been established yet.This is why SLD icing is characterized by splash and bounce phenomena of droplets and they are very complex in nature.In the present study,we develop an ice accretion code considering the splash and bounce phenomena to predict SLD icing,and the code is applied to a fan rotor blade.The numerical results with and without the SLD icing model are compared.Through this study,the influence of the SLD icing model is numerically clarified. 展开更多
关键词 Ice Accretion Fan Rotor Blade Super-cooled Large Droplet Multi-physics Simulation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部