A self-developed double-nozzle gas atomization technique was used to produce AlSi10Mg powder.Effects of delivery tube diameter,gas pressure,and melt superheat on powder characteristics were investigated.The concepts o...A self-developed double-nozzle gas atomization technique was used to produce AlSi10Mg powder.Effects of delivery tube diameter,gas pressure,and melt superheat on powder characteristics were investigated.The concepts of bluntness and outgrowth were introduced to analyze powder sphericity and satellite index quantitatively.The results showed that the median diameters of all atomized powders ranged from 25 to 33μm.The highest yield rate(72.13%)of fine powder(<50μm)was obtained at a superheat of 350 K.The powder size decreased with increasing melt superheat but increased with increasing delivery tube diameter.Powders with bluntness values between 96%and 98%accounted for over 60%.The outgrowth values demonstrated that 70%-85%of all powders did not contain satellite particles,with few powders adhered two or three particles.Not only Al and Si phases were present but also a metastable Al9Si phase was detected.展开更多
The ultrasonic spray technology is studied by the method of theoretical derivation, CFD simulation, spray particle diameter detection and analysis, and experimental analysis. And the ultrasonic spray process for the c...The ultrasonic spray technology is studied by the method of theoretical derivation, CFD simulation, spray particle diameter detection and analysis, and experimental analysis. And the ultrasonic spray process for the coating of vascular stent is also optimized. Firstly, the ultrasonic atomization physical model is established and the equation of atomization particle diameter is derived. Secondly, the ultrasonic atomization process is simulated by the CFD method, and shows three atomization patterns: incomplete atomization pattern, critical atomization pattern and jet atomization pattem. The critical amplitude and power equation for ultrasonic atomization is derived. Thirdly, experiment is conducted to study the influence of parameters including power, gas pressure, and surface tension. The results show that the spray is stable though few particles are likely to collide each other during spray moving, and the droplet diameter is about 10μm. The Rosin-Rammler distribution equation for ultrasonic spray is created, and the uniform index number is between 7.11 and 11.48. The uniformity of spray particle diameter, the efficiency of adjustment and the energy consumption are better than traditional spray technology. Lastly, the ultrasonic spray process parameters for stent coating are optimized to eliminate the common defects and obtain fine coating.展开更多
基金Project(51627805) supported by the National Natural Science Foundation of ChinaProject(2015A030312003) supported by the Natural Science Foundation of Guangdong Province,China+1 种基金Projects(2014B010129003,2015B020238008,2016B090931006,2017B090901025) supported by the Science and Technology Research Department of Guangdong Province,ChinaProject(201604016049) supported by the Science and Technology Bureau of Guangzhou City,China
文摘A self-developed double-nozzle gas atomization technique was used to produce AlSi10Mg powder.Effects of delivery tube diameter,gas pressure,and melt superheat on powder characteristics were investigated.The concepts of bluntness and outgrowth were introduced to analyze powder sphericity and satellite index quantitatively.The results showed that the median diameters of all atomized powders ranged from 25 to 33μm.The highest yield rate(72.13%)of fine powder(<50μm)was obtained at a superheat of 350 K.The powder size decreased with increasing melt superheat but increased with increasing delivery tube diameter.Powders with bluntness values between 96%and 98%accounted for over 60%.The outgrowth values demonstrated that 70%-85%of all powders did not contain satellite particles,with few powders adhered two or three particles.Not only Al and Si phases were present but also a metastable Al9Si phase was detected.
基金supported by the National Natural Science Foundation of China (Grant No. 91023024)the Technology Supported Research Program from Jiangsu Province (Grant Nos.BE2009054,BA2009002,and BK2010398)
文摘The ultrasonic spray technology is studied by the method of theoretical derivation, CFD simulation, spray particle diameter detection and analysis, and experimental analysis. And the ultrasonic spray process for the coating of vascular stent is also optimized. Firstly, the ultrasonic atomization physical model is established and the equation of atomization particle diameter is derived. Secondly, the ultrasonic atomization process is simulated by the CFD method, and shows three atomization patterns: incomplete atomization pattern, critical atomization pattern and jet atomization pattem. The critical amplitude and power equation for ultrasonic atomization is derived. Thirdly, experiment is conducted to study the influence of parameters including power, gas pressure, and surface tension. The results show that the spray is stable though few particles are likely to collide each other during spray moving, and the droplet diameter is about 10μm. The Rosin-Rammler distribution equation for ultrasonic spray is created, and the uniform index number is between 7.11 and 11.48. The uniformity of spray particle diameter, the efficiency of adjustment and the energy consumption are better than traditional spray technology. Lastly, the ultrasonic spray process parameters for stent coating are optimized to eliminate the common defects and obtain fine coating.