The Loess Plateau is an earthquake prone region of China, where the effects of loess deposit on ground motion were discovered during the 2008 Wenchuan earthquake(Ms8.0) and the 2013 Minxian-Zhangxian earthquake(Ms6.6)...The Loess Plateau is an earthquake prone region of China, where the effects of loess deposit on ground motion were discovered during the 2008 Wenchuan earthquake(Ms8.0) and the 2013 Minxian-Zhangxian earthquake(Ms6.6). The field investigations, observations, and analyses indicated that large number of casualties and tremendous economic losses were caused not only by collapse and damage of houses with poor seismic performance, landslides, but also amplification effects of site conditions, topography and thickness of loess deposit, on ground motion. In this paper, we chose Dazhai Village and Majiagou Village as the typical loess site affected by the two earthquakes for intensity evaluation, borehole exploration, temporary strong motion array, micro tremor survey, and numerical analysis. The aim is to explore the relations between amplification factors and site conditions in terms of topography and thickness of loess deposit. We also developed site amplification factors of ground motion for engineering design consideration at loess sites. The results showed that the amplification effects are more predominant with increase in thickness of loess deposit and slope height. The amplification mayincrease seismic intensity by 1 degree, PGA and predominant period by 2 times, respectively.展开更多
The Lajishan Mountain fault zone consists of two NE_protruding arcuate faults, i.e. the northern and southern margin fault of Lajishan Mountain with the fault length of 230km and 220km respectively. The fault zone is ...The Lajishan Mountain fault zone consists of two NE_protruding arcuate faults, i.e. the northern and southern margin fault of Lajishan Mountain with the fault length of 230km and 220km respectively. The fault zone is located in the large_scale compressional structure zone and tectonic gradient zone in_between the NNW_trending right_lateral strike_slip Reshui_Riyueshan fault zone and the NWW_trending left_lateral strike_slip northern margin of west Qinling Ranges fault zone is also an important boundary fault zone, separating the Xining_Minhe basin and the Xunhua_Hualong basin at the southern and northern sides of the Lajishan Mountain respectively. Geologic geomorphic evidences of new activity revealed by field investigations indicate that the latest movement of the Lajishan fault zone was in late Epipleistocene (only a few segments were active in early Holocene) and is mainly of compressive thrusting with slightly left_lateral strike_slip component. The above movement has possibly resulted in the occurrence of about 20 moderate earthquakes of magnitude around 5.0. The Lajishan region can therefore be regarded as a seismotectonic window to reflect tectonic movement and earthquake activity.展开更多
Loess is widely distributed in China and the Loess Plateau is one of the major areas where strong earthquakes often take place. The seismic amplification effects were discovered in the Plateau during the Wenchuan Ms8....Loess is widely distributed in China and the Loess Plateau is one of the major areas where strong earthquakes often take place. The seismic amplification effects were discovered in the Plateau during the Wenchuan Ms8.0 earthquake and some other strong events. Based on earth tremor observation, borehole exploration and site seismic response analysis, the site effects of topography of Loess Yuan on ground motion were investigated in details. The earth tremor investigation shows that predominant frequencies at the bottom sites of Loess Yuan are greater than those at the top obviously. The sites seismic response analysis shows that the Loess Yuan may amplify peak ground acceleration (PGA) by 1.44 2.0 times. Therefore, site effects of mountains and loess topography on ground motion should be taken account into in seismic design in loess regions.展开更多
Fault structures in the Litang-Batang region of West Sichuan are mainly sub-longitudinal and a set of NNE- and NW-trending conjugate shear fracture zones is developed. In this paper, emphasis is put on explaining the ...Fault structures in the Litang-Batang region of West Sichuan are mainly sub-longitudinal and a set of NNE- and NW-trending conjugate shear fracture zones is developed. In this paper, emphasis is put on explaining the movement patterns along the fault structures in the region since the late Pleistocene-Holocene on the basis of detailed interpretation of TM satellite images and aero-photos in geomorphologic aspect of active structures. The sub-latitudinal shortening rate along the sub-longitudinal Jinshajiang fault zone is determined to be 2~3mm/a since the late Quaternary, the horizontal dextral slip movement rate along the NNE-trending Batang fault is 1.3~2.7mm/a on average, and the horizontal sinistral slip movement rate along the NW-trending Litang fault is 2.6~4.4 mm/a on average. The general status of the recent crustal movement in the region and the regularities of block motion caused by it are analyzed in combination with data of geophysical fields, focal mechanism solutions and GPS measurements. The occurrence of the 1989 Batang M6.2~6.7 earthquake swarm is suggested to be the result of tensional rupture along the sub-latitudinal normal fault derived from the conjugate shearing along the NNE-trending Batang and the NW-trending Litang faults. It reveals a typical seismic case produced by normal faulting in a compressional tectonic environment.展开更多
Abstract: The Wenchuan earthquake generated strong surface disturbances and triggered a large number of loose deposits, resulting in the disaster- prone environment with special watershed hydrological characteristics...Abstract: The Wenchuan earthquake generated strong surface disturbances and triggered a large number of loose deposits, resulting in the disaster- prone environment with special watershed hydrological characteristics. This paper was to propose a debris flow formation process and explore the permeability characteristics and critical hydrodynamic conditions of the loose deposits triggered by the earthquake. The Guo Juanyan gully (31005'27" N to 31005'46" N, 103036'58" E to 103037'09" E) in Du Jiangyan City, located in the meizoseismal areas of the Wenchuan earthquake, was chosen as the study area and the disaster-prone environment was analyzed. The formation process of the debris flow was first proposed using a stability analysis, and then, the permeability characteristics of loose deposits were determined via in situ permeability experiments. Finally, the critical 1 h rainfall was simulated through a distributed hydrological model and verified by field observations. The formation process of debris flow could be divided into three stages based on the relationship between the hydrodynamic force and loose deposit resistance. The critical 1 h rainfall amounts under three antecedent moisture conditions (I-dry, Ⅱ-normal and Ⅲ-wet) were 52 mm/h, 43 mm/h and 34 mm/h, respectively. This study proposed a debris flow formation process in the meizoseismal areas of the Wenchuan earthquake based on the stability analysis and defined the rainfall threshold for debris flow early warning at the local level, which is significant for debris flow mitigation and risk management.展开更多
This report describes briefly the natural conditions and effect of earthquakes in Laos. Though Laos is not severely affected by earthquakes, it is doing its best to start seismological activity through the bilateral c...This report describes briefly the natural conditions and effect of earthquakes in Laos. Though Laos is not severely affected by earthquakes, it is doing its best to start seismological activity through the bilateral cooperation with China and with other ASEAN countries and through the framework of ASEAN-China cooperation.展开更多
The primary objective of this study was to evaluate the existing conditions and the stability of a mining site in which the unique features of seismicity, mining activity, hydrological conditions, geological condition...The primary objective of this study was to evaluate the existing conditions and the stability of a mining site in which the unique features of seismicity, mining activity, hydrological conditions, geological conditions, environmental conditions, and future development plans were considered. In particular, the potential subsidence locations near the proposed construction site, the effects of mining boundary profile,and the influence scope of the mining activity on the neighboring areas were investigated using the finite element method. The study results indicate:(1) the overlying sandstone layer to the coal layer is the key to the stability of the mining roof;(2) the broken boundary has the most effect, followed by the arc boundary and linear boundary;(3) the safe distance from the mining boundary should be at least400 m if the proposed structure is to be built near an active mining site. Other relevant engineering recommendations are also proposed. The concluded results from this study may serve as a guide to other similar sites in the world.展开更多
In thispaper, the effects of a rigid baffle on the seismic response of liquid in a rigid cylindrical tank are evaluated. A baffle is an annular plate which supplies a kind of passive control on the effects of ground e...In thispaper, the effects of a rigid baffle on the seismic response of liquid in a rigid cylindrical tank are evaluated. A baffle is an annular plate which supplies a kind of passive control on the effects of ground excitation. The contained liquid is assumed incompressible, inviscid and has irrotational motion. To estimate the seismic response, the method of superposition of modes has been applied. To analyze the rigid tank response, Laplace's equation is considered as the governing equation of the fluid domain, in both time and frequency domains. The boundary element method (BEM) is employed to evaluate the natural modes of liquid in a cylindrical tank. To gain this goal, the fluid domain is divided into two upper and lower parts partitioned by the baffle. Linearized kinematic and dynamic boundary conditions of the free surface of the contained liquid have been considered.展开更多
Based on the collection and analysis of achievements of other scholars, and by consulting the results of seismic safety evaluation of engineering sites and field surveys of recent years, the seismotectonic indicators ...Based on the collection and analysis of achievements of other scholars, and by consulting the results of seismic safety evaluation of engineering sites and field surveys of recent years, the seismotectonic indicators are determined for northwest Yunnan and its vicinity, and then potential seismic sources are further delineated. In practice, the following principles are applied: for areas with strong historical earthquakes, the recurrence principle is used to determine the upper bound magnitude; for areas with distinct seismogenic structure but no historical strong earthquake records, the tectonic analogy principle is used in the light of the size and activity behavior of the structure; for areas where the segmentation of the active fault is well studied, the potential sources will be demarcated more precisely; and for areas with buried fault, the seismicity pattern and geophysical abnormity are used to determine the direction of the major axis of the potential seismic source.展开更多
Two hours after the 2010 Yushu Earthquake, the shaking intensity distribution was obtained using the ShakeMap Rapid Generation System Based on Site Effects, developed by the author, which integrates the information of...Two hours after the 2010 Yushu Earthquake, the shaking intensity distribution was obtained using the ShakeMap Rapid Generation System Based on Site Effects, developed by the author, which integrates the information of tectonic settings, the strike and scale of causative faults, focal mechanism solutions, fault rupture process and attenuation relationship in Western China, as well as local site effects. The results are as follows: (1) The major axis of shaking intensity distribution is directed NW-SE, parallel to the Yushu fault; (2) The meizoseismal area reaches an intensity IX and covers 300km^2; (3) The intensity IX area is mainly distributed in the area 40km southeast and 15km northwest of the epicenter along the causative fault; (4) Due to local soil conditions, the northwestern part of the area with intensity IX on bedrock shows an intensity Ⅷ when converting from the bedrock to the soil; (5) Areas with intensity Ⅷ, VII, VI measure 3,000km^2, 8,000km^2, and 24,000km^2, respectively.展开更多
An approach is described that has been developed for auxiliary monitoring of technical condition of hydropower plant dams. It is based on analysis of changes in dynamic characteristics of dams obtained by an automated...An approach is described that has been developed for auxiliary monitoring of technical condition of hydropower plant dams. It is based on analysis of changes in dynamic characteristics of dams obtained by an automated monitoring and earthquake registration system that records microseismic vibrations of structures. The configuration of the system as well as the results of seismometric monitoring of the dam of Krasnoyarsk hydroelectric power plant are described. To study behavior of the dam under normal and extreme loads it was proposed to develop a model of the dam with the use of the finite element method.展开更多
基金financially supported by National Natural Science Foundation of China (No.51478444 & No.41472297)
文摘The Loess Plateau is an earthquake prone region of China, where the effects of loess deposit on ground motion were discovered during the 2008 Wenchuan earthquake(Ms8.0) and the 2013 Minxian-Zhangxian earthquake(Ms6.6). The field investigations, observations, and analyses indicated that large number of casualties and tremendous economic losses were caused not only by collapse and damage of houses with poor seismic performance, landslides, but also amplification effects of site conditions, topography and thickness of loess deposit, on ground motion. In this paper, we chose Dazhai Village and Majiagou Village as the typical loess site affected by the two earthquakes for intensity evaluation, borehole exploration, temporary strong motion array, micro tremor survey, and numerical analysis. The aim is to explore the relations between amplification factors and site conditions in terms of topography and thickness of loess deposit. We also developed site amplification factors of ground motion for engineering design consideration at loess sites. The results showed that the amplification effects are more predominant with increase in thickness of loess deposit and slope height. The amplification mayincrease seismic intensity by 1 degree, PGA and predominant period by 2 times, respectively.
文摘The Lajishan Mountain fault zone consists of two NE_protruding arcuate faults, i.e. the northern and southern margin fault of Lajishan Mountain with the fault length of 230km and 220km respectively. The fault zone is located in the large_scale compressional structure zone and tectonic gradient zone in_between the NNW_trending right_lateral strike_slip Reshui_Riyueshan fault zone and the NWW_trending left_lateral strike_slip northern margin of west Qinling Ranges fault zone is also an important boundary fault zone, separating the Xining_Minhe basin and the Xunhua_Hualong basin at the southern and northern sides of the Lajishan Mountain respectively. Geologic geomorphic evidences of new activity revealed by field investigations indicate that the latest movement of the Lajishan fault zone was in late Epipleistocene (only a few segments were active in early Holocene) and is mainly of compressive thrusting with slightly left_lateral strike_slip component. The above movement has possibly resulted in the occurrence of about 20 moderate earthquakes of magnitude around 5.0. The Lajishan region can therefore be regarded as a seismotectonic window to reflect tectonic movement and earthquake activity.
基金Foundation item: Projects(40902094, 50978239) supported by the National Natural Science Foundation of China Project(2012IESLZO1) supported by the Fund of the Institute of Earthquake Prediction, CEA, China
文摘Loess is widely distributed in China and the Loess Plateau is one of the major areas where strong earthquakes often take place. The seismic amplification effects were discovered in the Plateau during the Wenchuan Ms8.0 earthquake and some other strong events. Based on earth tremor observation, borehole exploration and site seismic response analysis, the site effects of topography of Loess Yuan on ground motion were investigated in details. The earth tremor investigation shows that predominant frequencies at the bottom sites of Loess Yuan are greater than those at the top obviously. The sites seismic response analysis shows that the Loess Yuan may amplify peak ground acceleration (PGA) by 1.44 2.0 times. Therefore, site effects of mountains and loess topography on ground motion should be taken account into in seismic design in loess regions.
文摘Fault structures in the Litang-Batang region of West Sichuan are mainly sub-longitudinal and a set of NNE- and NW-trending conjugate shear fracture zones is developed. In this paper, emphasis is put on explaining the movement patterns along the fault structures in the region since the late Pleistocene-Holocene on the basis of detailed interpretation of TM satellite images and aero-photos in geomorphologic aspect of active structures. The sub-latitudinal shortening rate along the sub-longitudinal Jinshajiang fault zone is determined to be 2~3mm/a since the late Quaternary, the horizontal dextral slip movement rate along the NNE-trending Batang fault is 1.3~2.7mm/a on average, and the horizontal sinistral slip movement rate along the NW-trending Litang fault is 2.6~4.4 mm/a on average. The general status of the recent crustal movement in the region and the regularities of block motion caused by it are analyzed in combination with data of geophysical fields, focal mechanism solutions and GPS measurements. The occurrence of the 1989 Batang M6.2~6.7 earthquake swarm is suggested to be the result of tensional rupture along the sub-latitudinal normal fault derived from the conjugate shearing along the NNE-trending Batang and the NW-trending Litang faults. It reveals a typical seismic case produced by normal faulting in a compressional tectonic environment.
基金Financial support was provided by the international cooperation project of the Ministry of Science and Technology (Grant No.2013DFA21720)the Key Laboratory of Mountain Hazards and Earth Surface Processes independent project fundingthe National Natural Science Foundation (Grant No. 41372331)
文摘Abstract: The Wenchuan earthquake generated strong surface disturbances and triggered a large number of loose deposits, resulting in the disaster- prone environment with special watershed hydrological characteristics. This paper was to propose a debris flow formation process and explore the permeability characteristics and critical hydrodynamic conditions of the loose deposits triggered by the earthquake. The Guo Juanyan gully (31005'27" N to 31005'46" N, 103036'58" E to 103037'09" E) in Du Jiangyan City, located in the meizoseismal areas of the Wenchuan earthquake, was chosen as the study area and the disaster-prone environment was analyzed. The formation process of the debris flow was first proposed using a stability analysis, and then, the permeability characteristics of loose deposits were determined via in situ permeability experiments. Finally, the critical 1 h rainfall was simulated through a distributed hydrological model and verified by field observations. The formation process of debris flow could be divided into three stages based on the relationship between the hydrodynamic force and loose deposit resistance. The critical 1 h rainfall amounts under three antecedent moisture conditions (I-dry, Ⅱ-normal and Ⅲ-wet) were 52 mm/h, 43 mm/h and 34 mm/h, respectively. This study proposed a debris flow formation process in the meizoseismal areas of the Wenchuan earthquake based on the stability analysis and defined the rainfall threshold for debris flow early warning at the local level, which is significant for debris flow mitigation and risk management.
文摘This report describes briefly the natural conditions and effect of earthquakes in Laos. Though Laos is not severely affected by earthquakes, it is doing its best to start seismological activity through the bilateral cooperation with China and with other ASEAN countries and through the framework of ASEAN-China cooperation.
基金Shaanxi Research Institute of Seismic Engineering, China for providing the necessary financial support for this study
文摘The primary objective of this study was to evaluate the existing conditions and the stability of a mining site in which the unique features of seismicity, mining activity, hydrological conditions, geological conditions, environmental conditions, and future development plans were considered. In particular, the potential subsidence locations near the proposed construction site, the effects of mining boundary profile,and the influence scope of the mining activity on the neighboring areas were investigated using the finite element method. The study results indicate:(1) the overlying sandstone layer to the coal layer is the key to the stability of the mining roof;(2) the broken boundary has the most effect, followed by the arc boundary and linear boundary;(3) the safe distance from the mining boundary should be at least400 m if the proposed structure is to be built near an active mining site. Other relevant engineering recommendations are also proposed. The concluded results from this study may serve as a guide to other similar sites in the world.
文摘In thispaper, the effects of a rigid baffle on the seismic response of liquid in a rigid cylindrical tank are evaluated. A baffle is an annular plate which supplies a kind of passive control on the effects of ground excitation. The contained liquid is assumed incompressible, inviscid and has irrotational motion. To estimate the seismic response, the method of superposition of modes has been applied. To analyze the rigid tank response, Laplace's equation is considered as the governing equation of the fluid domain, in both time and frequency domains. The boundary element method (BEM) is employed to evaluate the natural modes of liquid in a cylindrical tank. To gain this goal, the fluid domain is divided into two upper and lower parts partitioned by the baffle. Linearized kinematic and dynamic boundary conditions of the free surface of the contained liquid have been considered.
文摘Based on the collection and analysis of achievements of other scholars, and by consulting the results of seismic safety evaluation of engineering sites and field surveys of recent years, the seismotectonic indicators are determined for northwest Yunnan and its vicinity, and then potential seismic sources are further delineated. In practice, the following principles are applied: for areas with strong historical earthquakes, the recurrence principle is used to determine the upper bound magnitude; for areas with distinct seismogenic structure but no historical strong earthquake records, the tectonic analogy principle is used in the light of the size and activity behavior of the structure; for areas where the segmentation of the active fault is well studied, the potential sources will be demarcated more precisely; and for areas with buried fault, the seismicity pattern and geophysical abnormity are used to determine the direction of the major axis of the potential seismic source.
文摘Two hours after the 2010 Yushu Earthquake, the shaking intensity distribution was obtained using the ShakeMap Rapid Generation System Based on Site Effects, developed by the author, which integrates the information of tectonic settings, the strike and scale of causative faults, focal mechanism solutions, fault rupture process and attenuation relationship in Western China, as well as local site effects. The results are as follows: (1) The major axis of shaking intensity distribution is directed NW-SE, parallel to the Yushu fault; (2) The meizoseismal area reaches an intensity IX and covers 300km^2; (3) The intensity IX area is mainly distributed in the area 40km southeast and 15km northwest of the epicenter along the causative fault; (4) Due to local soil conditions, the northwestern part of the area with intensity IX on bedrock shows an intensity Ⅷ when converting from the bedrock to the soil; (5) Areas with intensity Ⅷ, VII, VI measure 3,000km^2, 8,000km^2, and 24,000km^2, respectively.
文摘An approach is described that has been developed for auxiliary monitoring of technical condition of hydropower plant dams. It is based on analysis of changes in dynamic characteristics of dams obtained by an automated monitoring and earthquake registration system that records microseismic vibrations of structures. The configuration of the system as well as the results of seismometric monitoring of the dam of Krasnoyarsk hydroelectric power plant are described. To study behavior of the dam under normal and extreme loads it was proposed to develop a model of the dam with the use of the finite element method.