The limiting performa nce analysis is used to study the optimal shock and impact isolation of mechanic al systems. The use of wavelets to approximate time-domain control functions is investigated. The formulation for...The limiting performa nce analysis is used to study the optimal shock and impact isolation of mechanic al systems. The use of wavelets to approximate time-domain control functions is investigated. The formulation for numerical computation is developed. Numerical examples include the optimal shock isolation of a SDOF system and the optimal i mpact isolation of a MDOF system. Computational results show that compactly supp orted wavelets can represent abrupt changes in control functions better than tri gonometric series and considerably increase computational efficiency.展开更多
We investigated the behaviors of an active control system of two-stage vibration isolation with the actuator installed in parallel with either the upper passive mount or the lower passive isolation mount. We revealed ...We investigated the behaviors of an active control system of two-stage vibration isolation with the actuator installed in parallel with either the upper passive mount or the lower passive isolation mount. We revealed the relationships between the active control force of the actuator and the parameters of the passive isolators by studying the dynamics of two-stage active vibration isolation for the actuator at the foregoing two positions in turn. With the actuator installed beside the upper mount, a small active force can achieve a very good isolating effect when the frequency of the stimulating force is much larger than the natural frequency of the upper mount; a larger active force is required in the low-frequency domain; and the active force equals the stimulating force when the upper mount works within the resonance region, suggesting an approach to reducing wobble and ensuring desirable installation accuracy by increasing the upper-mount stiffness. In either the low or the high frequency region far away from the resonance region, the active force is smaller when the actuator is beside the lower mount than beside the upper mount.展开更多
文摘The limiting performa nce analysis is used to study the optimal shock and impact isolation of mechanic al systems. The use of wavelets to approximate time-domain control functions is investigated. The formulation for numerical computation is developed. Numerical examples include the optimal shock isolation of a SDOF system and the optimal i mpact isolation of a MDOF system. Computational results show that compactly supp orted wavelets can represent abrupt changes in control functions better than tri gonometric series and considerably increase computational efficiency.
基金the Natural Science Foundation of China under Grant No. 50075029
文摘We investigated the behaviors of an active control system of two-stage vibration isolation with the actuator installed in parallel with either the upper passive mount or the lower passive isolation mount. We revealed the relationships between the active control force of the actuator and the parameters of the passive isolators by studying the dynamics of two-stage active vibration isolation for the actuator at the foregoing two positions in turn. With the actuator installed beside the upper mount, a small active force can achieve a very good isolating effect when the frequency of the stimulating force is much larger than the natural frequency of the upper mount; a larger active force is required in the low-frequency domain; and the active force equals the stimulating force when the upper mount works within the resonance region, suggesting an approach to reducing wobble and ensuring desirable installation accuracy by increasing the upper-mount stiffness. In either the low or the high frequency region far away from the resonance region, the active force is smaller when the actuator is beside the lower mount than beside the upper mount.