期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于地质信息约束的概率神经网络地震反射模式预测方法 被引量:5
1
作者 丁峰 胡光义 +3 位作者 尹成 范廷恩 罗浩然 张栋 《中国海上油气》 CAS CSCD 北大核心 2018年第1期127-131,共5页
已有神经网络地震反射模式预测所得结果往往不稳定,多次预测可能出现多种结果,难以评价预测结果的准确性;而且预测值只代表了不同的反射类别,并没有相应的地质指示和含义。通过构建地质信息库和地质模式-地震模式的转换技术,建立了一种... 已有神经网络地震反射模式预测所得结果往往不稳定,多次预测可能出现多种结果,难以评价预测结果的准确性;而且预测值只代表了不同的反射类别,并没有相应的地质指示和含义。通过构建地质信息库和地质模式-地震模式的转换技术,建立了一种地质信息约束下的概率神经网络地震反射模式预测方法,解决了两个关键性问题,一是地质信息如何体现对地震信息的约束,二是地质信息约束的地震反射模式的高精度预测如何实现。以渤海秦皇岛32-6油田某河流相储层为例,选取20口井作为检验井,25口井作为约束井,本文方法储层地震反射模式预测的符合率为86%;模型及实际数据应用表明,在地震资料主频为45 Hz左右时,本文方法可以有效识别出3~8 m的河道砂体,并能够辨别大于2 m的泥岩隔夹层个数,具有高效、稳定、智能化、可解读性强等特点。 展开更多
关键词 地质信息约束 模式 震反射模式 属性 率神经网络 皇岛32-6油田
下载PDF
Tensor discriminant dictionary classification method for prestack seismic reflection patterns
2
作者 Cai Han-Peng Jing Peng Yang Jun-Hui 《Applied Geophysics》 SCIE CSCD 2022年第2期197-208,307,共13页
The existing seismic reflection pattern classification methods need to convert multidimensional prestack seismic data into one-dimensional vectors for processing,which loses the characteristics of amplitude variation ... The existing seismic reflection pattern classification methods need to convert multidimensional prestack seismic data into one-dimensional vectors for processing,which loses the characteristics of amplitude variation with offset/azimuth in the prestack seismic data.In this study,a tensor discriminant dictionary learning method for classifying prestack seismic reflection patterns is proposed.The method is initially based on the tensor Tucker decomposition algorithm and uses a tensor form to characterize the prestack seismic data with multidimensional features.The tensor discriminant dictionary is then used to reduce the influence of noise on the sample features.Finally,the method uses the Pearson correlation coefficient to measure the correlation degree of the sparse representation coefficients of different types of tensors.The advantages of the new method are as follows.(1)It can retain the rich structural features in different dimensions in the prestack data.(2)It adjusts the threshold of the Pearson correlation coefficient to optimize the classification effect.(3)It fully uses drilling information and expert knowledge and performs calibration training of the sample labels.The numerical-model tests confirm that the new method is more accurate and robust than the traditional support vector machine and K-nearest neighbor classification algorithms.The application of actual data further confirms that the classification results of the new method agree with the geological patterns and are more suitable for the analysis and interpretation of sedimentary facies. 展开更多
关键词 Prestack seismic data seismic reflection pattern analysis TENSORS discriminative dictionary learning
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部