The "4.20" Lushan earthquake in Sichuan province, China has induced a large amount of geological hazards and produced abundant loose materials which are prone to post-earthquake rainfall- triggered landslides. A det...The "4.20" Lushan earthquake in Sichuan province, China has induced a large amount of geological hazards and produced abundant loose materials which are prone to post-earthquake rainfall- triggered landslides. A detailed landslide inventory was acquired through post-earthquake emergent field investigation and high resolution remote sensing interpretation. The rainfall analysis was conducted using historical rainfall records during the period from 1951 to 2010. Results indicate that the average annual rainfall distribution is heterogeneous and the largest average annual rainfall occurs in Yucheng district. The Stability Index MAPping (SINMAP) model was adopted to assess and analyze the post- earthquake slope stability under different rainfall scenarios (light rainfall, moderate rainfall, heavy rainfall, and rainstorm). The model parameters were calibrated to reflect the significant influence of strong earthquakes on geological settings. The slope stability maps triggered by different rainfall scenarios were produced at a regional scale. The effect of different rainfall conditions on the slope stability is discussed. The expanding trend of the unstable area was quantitatively assessed with the different critical rainfall intensity. They provide a new insight into the spatial distribution and characteristics of post- earthquake rainfall-triggered landslides in the Lushan seismic area. An increase of rainfall intensity results in a significant increase heterogeneous distribution strongly correlated with of unstable area. The of slope instability is the distribution of earthquake intensity in spite of different rainfall conditions. The results suggest that the both seismic intensity and rainfall are two crucial factors for post- earthquake slope stability. This study provides important references for landslide prevention and mitigation in the Lushan area after earthquake.展开更多
The seismic frequency increased significantly in the Yunnan region after the Indonesia earthquake with M_S8.7 on December 26, 2004. This was estimated by analyzing the seismic frequency ratio between the influenced an...The seismic frequency increased significantly in the Yunnan region after the Indonesia earthquake with M_S8.7 on December 26, 2004. This was estimated by analyzing the seismic frequency ratio between the influenced and normal times, the spatial distribution characteristics of the increased seismic frequency, the temporal-spatial distribution and types of seismic swarms. Seismic frequency increased at 71.3% of the statistical sites in the Yunnan area. The maximal increase ratio is 18.2.展开更多
Since 2001, there have occurred in succession the 2001 Kunlun Mountains M S8. 1earthquake,the 2008 Wenchuan M S8. 0 earthquake,the 2010 Yushu M S7. 1 earthquake and the 2012 Lushan M S7. 0 earthquake in the periphery ...Since 2001, there have occurred in succession the 2001 Kunlun Mountains M S8. 1earthquake,the 2008 Wenchuan M S8. 0 earthquake,the 2010 Yushu M S7. 1 earthquake and the 2012 Lushan M S7. 0 earthquake in the periphery of the Bayan Har block. By comparison of the characteristics of seismic strain release variations before and after the Kunlun Mountains M S8. 1 earthquake in the same time length in the geodynamical related regions,we found that the seismic strain release was obviously enhanced after the earthquake in the Longmenshan area,Batang area,and the NS-trending valleys at the west of the Hot Spring Basin. The Wenchuan earthquake occurred in the first area,and the Yushu earthquake is related to the second area. After the earthquake rupture occurred on the East Kunlun fault zone on the northern boundary of the Bayan Har Block,crustal materials on the south side of the fault zone migrated to the southeast,leading to a concentration of tectonic deformation in the Longmenshan thrust belt, e ventually rupturing on the Longmenshan thrust belt. This earthquake case illustrates that seismicity enhancement zones are possibly prone to long-term destructive earthquakes. After the M S7. 3 earthquake in Yutian,Xinjiang on February 12,2014,earthquake frequency and seismic strain release markedly increased in the junction area between the eastern Qilian Mountain tectonic belt and the Altun Tagh fault zone,where more attention should be paid to the long-term seismic risk.展开更多
815 earthquakes recorded by 12 seismic stations of the Zipingpu reservoir seismic network in 2009 were relocated using the double difference algorithm to analyze the seismic activity of the Zipingpu reservoir.Relocati...815 earthquakes recorded by 12 seismic stations of the Zipingpu reservoir seismic network in 2009 were relocated using the double difference algorithm to analyze the seismic activity of the Zipingpu reservoir.Relocation results show that the earthquakes are concentrated relatively in three zones.The distribution characteristics of focal depth are obviously different among different concentration zones.This means earthquakes in different concentration zones may have different causes.Compared to relocation of earthquakes taking place before the Wenchuan earthquake done by other researchers,the seismic concentration zones in the reservoir area shifted obviously after the Wenchuan earthquake.These variations are related to local stress adjustment in the reservoir area and may also be related to the diffusion depth and range of increased pore pressure caused by rock failure in the course of Wenchuan earthquake.展开更多
基金supported by the Project of the 12th Five-year National Sci-Tech Support Plan of China (2011BAK12B09)the National Science Foundation of China (41072241)+1 种基金the One Hundred Talents Program of Chinese Academy of Sciences (A1055)the China Geological Survey Project (12120113038000)
文摘The "4.20" Lushan earthquake in Sichuan province, China has induced a large amount of geological hazards and produced abundant loose materials which are prone to post-earthquake rainfall- triggered landslides. A detailed landslide inventory was acquired through post-earthquake emergent field investigation and high resolution remote sensing interpretation. The rainfall analysis was conducted using historical rainfall records during the period from 1951 to 2010. Results indicate that the average annual rainfall distribution is heterogeneous and the largest average annual rainfall occurs in Yucheng district. The Stability Index MAPping (SINMAP) model was adopted to assess and analyze the post- earthquake slope stability under different rainfall scenarios (light rainfall, moderate rainfall, heavy rainfall, and rainstorm). The model parameters were calibrated to reflect the significant influence of strong earthquakes on geological settings. The slope stability maps triggered by different rainfall scenarios were produced at a regional scale. The effect of different rainfall conditions on the slope stability is discussed. The expanding trend of the unstable area was quantitatively assessed with the different critical rainfall intensity. They provide a new insight into the spatial distribution and characteristics of post- earthquake rainfall-triggered landslides in the Lushan seismic area. An increase of rainfall intensity results in a significant increase heterogeneous distribution strongly correlated with of unstable area. The of slope instability is the distribution of earthquake intensity in spite of different rainfall conditions. The results suggest that the both seismic intensity and rainfall are two crucial factors for post- earthquake slope stability. This study provides important references for landslide prevention and mitigation in the Lushan area after earthquake.
文摘The seismic frequency increased significantly in the Yunnan region after the Indonesia earthquake with M_S8.7 on December 26, 2004. This was estimated by analyzing the seismic frequency ratio between the influenced and normal times, the spatial distribution characteristics of the increased seismic frequency, the temporal-spatial distribution and types of seismic swarms. Seismic frequency increased at 71.3% of the statistical sites in the Yunnan area. The maximal increase ratio is 18.2.
基金jointly supported by National Science Foundation of China(41302171)Active Fault Exploration in China(60112304)Basic Scientific Research Funds of China Earthquake Administration(2014IES0401,2012IES010303)
文摘Since 2001, there have occurred in succession the 2001 Kunlun Mountains M S8. 1earthquake,the 2008 Wenchuan M S8. 0 earthquake,the 2010 Yushu M S7. 1 earthquake and the 2012 Lushan M S7. 0 earthquake in the periphery of the Bayan Har block. By comparison of the characteristics of seismic strain release variations before and after the Kunlun Mountains M S8. 1 earthquake in the same time length in the geodynamical related regions,we found that the seismic strain release was obviously enhanced after the earthquake in the Longmenshan area,Batang area,and the NS-trending valleys at the west of the Hot Spring Basin. The Wenchuan earthquake occurred in the first area,and the Yushu earthquake is related to the second area. After the earthquake rupture occurred on the East Kunlun fault zone on the northern boundary of the Bayan Har Block,crustal materials on the south side of the fault zone migrated to the southeast,leading to a concentration of tectonic deformation in the Longmenshan thrust belt, e ventually rupturing on the Longmenshan thrust belt. This earthquake case illustrates that seismicity enhancement zones are possibly prone to long-term destructive earthquakes. After the M S7. 3 earthquake in Yutian,Xinjiang on February 12,2014,earthquake frequency and seismic strain release markedly increased in the junction area between the eastern Qilian Mountain tectonic belt and the Altun Tagh fault zone,where more attention should be paid to the long-term seismic risk.
基金funded jointly by National Science& Technology Pillar Program (Grant No. 2008BAC38B0401)special fund for basic scientific research of Institute of Geology,CEA (DF-IGCEA060828)
文摘815 earthquakes recorded by 12 seismic stations of the Zipingpu reservoir seismic network in 2009 were relocated using the double difference algorithm to analyze the seismic activity of the Zipingpu reservoir.Relocation results show that the earthquakes are concentrated relatively in three zones.The distribution characteristics of focal depth are obviously different among different concentration zones.This means earthquakes in different concentration zones may have different causes.Compared to relocation of earthquakes taking place before the Wenchuan earthquake done by other researchers,the seismic concentration zones in the reservoir area shifted obviously after the Wenchuan earthquake.These variations are related to local stress adjustment in the reservoir area and may also be related to the diffusion depth and range of increased pore pressure caused by rock failure in the course of Wenchuan earthquake.