A SiC/ZrSiO4?SiO2 (SZS) coating was successfully fabricated on the carbon/carbon (C/C) composites by pack cementation, slurry painting and sintering to improve the anti-oxidation property and thermal shock r...A SiC/ZrSiO4?SiO2 (SZS) coating was successfully fabricated on the carbon/carbon (C/C) composites by pack cementation, slurry painting and sintering to improve the anti-oxidation property and thermal shock resistance. The anti-oxidation properties under different oxygen partial pressures (OPP) and thermal shock resistance of the SZS coating were investigated. The results show that the SZS coated sample under low OPP, corresponding to the ambient air, during isothermal oxidation was 0.54% in mass gain after 111 h oxidation at 1500 ° C and less than 0.03% in mass loss after 50 h oxidation in high OPP, corresponding to the air flow rate of 36 L/h. Additionally, the residual compressive strengths (RCS) of the SZS coated samples after oxidation for 50 h in high OPP and 80 h in low OPP remain about 70% and 72.5% of those of original C/C samples, respectively. Moreover, the mass loss of SZS coated samples subjected to the thermal cycle from 1500 ° C in high OPP to boiling water for 30 times was merely 1.61%.展开更多
Earthquake-induced landslides can seriously aggravate the earthquake's destructive consequences and have caused widespread concern in recent decades. The Xianshuihe fault is a large active left-lateral strike-slip...Earthquake-induced landslides can seriously aggravate the earthquake's destructive consequences and have caused widespread concern in recent decades. The Xianshuihe fault is a large active left-lateral strike-slip fault in the southeast margin of Qinghai-Tibet Plateau, Southwest China, where the frequent strong earthquakes have brought abundant geo-hazards. This study focuses mainly on exploring and predicting the landslide scenes induced by the potential earthquakes. Firstly, the sophisticated Newmark model is improved through landslide cases induced by the Ms7.9 Luhuo earthquake in 1973 to adapt the field seismotectonics of the Xianshuihe fault zone. Then, it is used to predict the landslide scenes under one speculated potential earthquake scenario with the similar focal mechanism with the Luhuo earthquake. The preliminary results show that the slope displacement resulted from Newmark model can reflect spatial distribution characteristics ofearthquake-induced landslides. The predicted potential earthquake-induced landslide scenes present an obvious extending trend along the Xianshuihe fault. The landslide hazard is greater in the northeast regions than southwest regions of the Xianshuihe fault, where there are more complex topographic conditions. The study procedure will be a helpful demonstration for exploration and prediction of landslide scenes under potential earthquakes in the regions with high seismic activity.展开更多
This paper presents the damage in the meizoseismal region of the M_S8.0 Wenchuan earthquake,Sichuan,China,and the seismic intensities determined according to "the Chinese Seismic Intensity Scale",and discuss...This paper presents the damage in the meizoseismal region of the M_S8.0 Wenchuan earthquake,Sichuan,China,and the seismic intensities determined according to "the Chinese Seismic Intensity Scale",and discusses briefly the types of earthquake-generating faults and some features of seismic damage.展开更多
The seismic ductility of reinforced very-high-strength-concrete (VHSC) short columns was studied by combinatively applying axial load and low cyclic lateral load on specimens to simulate seismic impact. Twelve speci...The seismic ductility of reinforced very-high-strength-concrete (VHSC) short columns was studied by combinatively applying axial load and low cyclic lateral load on specimens to simulate seismic impact. Twelve specimens with concrete compressive strength ranging from 95.6 MPa to 118.6 MPa and a shear-span ratio of 2.0 were tested for shear failure pattern and fear force-displacement hysteretic responses. Combinative application of axial load and low cyclic lateral load to VHSC short columns incurs shear failure. The displacement ductility is much smaller when the axial load ratio is larger; whereas a larger stirrup ratio is accompanied with a better displacement ductility. The relationship of displacement ductility factor,μ△, with stirrup characteristic value, λv, and test axial load ratio, nt, is μ△=(1+8λv)/(0.33+nt). By this relationship and relevant codes for aseismatic design, the axial load ratio limits for aseismatic design of reinforced VHSC (C95 to C100) short columns for frame construction are respectively 0.5, 0.6, and 0.7 for seismic classes Ⅰ, Ⅱ, and Ⅲ; corresponding minimum characteristic values of stirrups are calculated according to the required characteristic values of at least 1.273 times of experimental results. These data are very useful to aseismatic engineering.展开更多
China’s high-speed railways are always facing the potential damage risk induced by strong earthquakes.And the route design concept of“using bridge instead of embankment”has also greatly increased the probability of...China’s high-speed railways are always facing the potential damage risk induced by strong earthquakes.And the route design concept of“using bridge instead of embankment”has also greatly increased the probability of high speed trains moving on bridges when a strong earthquake happens.In the past decades,a bunch of theoretical and numerical studies have been conducted in the seismic dynamic field of high-speed railway.However,the effective dynamic test system for verifying the given method and theoretical results is still lacking.Therefore,a novel dynamic test system(DTS)consisting of a shaking table array and a train-pass-bridge reduced-scale model is proposed in this paper.Through some crucial technical problems discussion,the effectiveness of similar design scheme and the feasibility of reduced-scale DTS are elaborated,and then the detailed DTS structures are given and displayed as part-by-part.On this basis,the demonstration tests are conducted and compared with the numerical simulation.The results show that the proposed DTS is accurate and effective.Therefore,the DTS can provide a new physical simulation approach to study the high-speed train’s running safety on bridges under earthquakes and can also provide a reference for the construction of related systems.展开更多
Yunnan is located in the east margin of the collision zone between the India Plate and the Eurasian Plate on the Chinese Continent, where crustal movement is violent and moderatestrong earthquakes are frequent. In add...Yunnan is located in the east margin of the collision zone between the India Plate and the Eurasian Plate on the Chinese Continent, where crustal movement is violent and moderatestrong earthquakes are frequent. In addition, the area features marked active block movement. Therefore, Yunnan is a perfect place for research on strong earthquake activity. Through the study on the temporal and spatial distribution of the M ≥ 6.7 earthquakes and the related earthquake dynamics in Yunnan in the last century, we conclude that the four seismically active periods, which are characterized by alternative activity in the east and the west part of Yunnan, possibly result from a combination of active and quiescent periods in each of the east and west part. And for every 100 years, there may be a period in which strong earthquakes occur in the east and west parts simultaneously. In addition, the seismicity of strong earthquakes in Yunnan corresponds well to that in the peripheral region. The seismicity of the great earthquakes in the Andaman-Myanmar Tectonic Arc belt indicates, to some extent, the beginning of a seismically active period in Yunnan. The seismicity of strong earthquakes in east Yunnan is closely related to that in Sichuan. Strong earthquakes in Sichuan often occur later than those in Yunnan. Furthermore, in the east part of Ynnnan, the three procedures including continuous occurrence of moderate-strong earthquake, quiescent period, and the occurrence of the first strong earthquake may be the style of the beginning of the earthquake active period. The above cognition is helpful to the study of earthquake prediction, seismogenic mechanism, and the dynamics of the plate margin in Yunnan.展开更多
Based on the strong earthquake catalogue, this paper discusses the characteristics of the time series of strong earthquake activities in the world, western Chinese mainland and its peripheral "big triangle seismic re...Based on the strong earthquake catalogue, this paper discusses the characteristics of the time series of strong earthquake activities in the world, western Chinese mainland and its peripheral "big triangle seismic region", as well as the Chinese mainland. According to the analysis of the periodic features of global seismicity of M I〉 8. 0 strong events, it is found that there is significant difference in global seismicity before and after the 1960s. Statistical analysis with the Fisher method has revealed that the "big triangular seismic region" has experienced a process of M8.0 earthquake activity with a duration of over a hundred years since 1800. Further analysis shows that the global seismicity and the "big triangular seismic region" possibly has a period of a hundred-year scale, and has quasi- synchronicity to a certain extent. The shallow earthquake activity of Ms I〉 7. 0 in the Chinese mainland is obviously controlled by the seismicity in the big triangular seismic region and by global seismicity in a larger spatial-scale. In terms of the time series of these earthquakes, the seismicity shows a decadal and century-scale activity patterns.展开更多
Previous studies have shown that the active tectonic block boundaries in the Chinese mainland are the main belts and concentration areas of strong earthquakes occurring in the Chinese mainland.It is essential to carry...Previous studies have shown that the active tectonic block boundaries in the Chinese mainland are the main belts and concentration areas of strong earthquakes occurring in the Chinese mainland.It is essential to carry out follow-up analysis of strong earthquake risk of active tectonic block boundaries.In this paper,we carry out the analysis on the tendency of strong earthquakes along each active tectonic block boundary from three aspects respectively,including the evolutionary characteristics of the Load/Unload Response Ratio time series,the probability method based on the log-normal distribution function,and variation of b value.The estimation of strong earthquake criticality on each active tectonic block boundary is done based on the evolutionary characteristics of the Load/Unload Response Ratio time series,the cumulative probability and conditional probability,and the decrease of the b value.Finally,according to the results of analyses on the above three aspects,the potential strong earthquake areas in the forthcoming 5 years in the Chinese mainland are discussed.展开更多
The relationships between Earth's rotation and the 1975 Haicheng, Liaoning Ms7.3 earthquake, 2008 Wenchuan, Sichuan Ms8.0 earthquake and the 2004 Sumatra Msg. 0 earthquake, as well as moderate-small earthquakes occur...The relationships between Earth's rotation and the 1975 Haicheng, Liaoning Ms7.3 earthquake, 2008 Wenchuan, Sichuan Ms8.0 earthquake and the 2004 Sumatra Msg. 0 earthquake, as well as moderate-small earthquakes occurring around the epicenter regions prior to them are investigated in this study. The obtained results could benefit the further understanding of the relationship between the Earth's rotation and earthquakes.展开更多
To retrofit and strengthen existing unreinforced masonry (URM) structures to resist the potential earthquake damages has become an important issue in Australia. In order to secure the performance of URM under seismic ...To retrofit and strengthen existing unreinforced masonry (URM) structures to resist the potential earthquake damages has become an important issue in Australia. In order to secure the performance of URM under seismic loading in the future, a research project was carried out aimed at developing a simple and high strength seismic retrofitting technique for masonry structures. A series of experimental testing on URM walls retrofitted with an innovative technique by cable system have been conducted. The results indicated that both the strength and ductility of the tested speci-mens were significantly enhanced with the technique. An analytical model which is based on Dis-tinct Element Method (DEM) has also been developed to simulate the behaviour of URM walls be-fore and after retrofitting. The model is then further developed by applying a seismic wave to the wall to simulate the wall behavior under earthquake loads before and after retrofitting.展开更多
Two near-vertical deep seismic reflection profiles (140km-long, 24-fold) were completed in the 1679 Sanhe-Pinggu earthquake (M8.0) region. The profiles ran through the Xiadian fault and the Ershilichangshan fault. The...Two near-vertical deep seismic reflection profiles (140km-long, 24-fold) were completed in the 1679 Sanhe-Pinggu earthquake (M8.0) region. The profiles ran through the Xiadian fault and the Ershilichangshan fault. The profiling result shows that the crust in this region is divided into the upper crust, the lower crust and the crust-mantle transitional zone by two powerful laminated reflectors: one at the two-way travel-time of about 7.0s (21km), the other at about 11.0~12.5s (33~37km). Crustal structure varies significantly in vertical direction. The shallow part is characterized by obvious stratification, multilayers and complexity. The upper crust on the whole features reflection “transparency”, while the lower crust features distinct reflectivity. Crustal structure also varies a lot in the lateral direction. The main fracture in this region is the deep fault under the Xiadian fault. This deep fault is steeply inclined (nearly vertical), and is supposed to be the causative fault of the Sanhe-Pinggu M8.0 earthquake. The two profiles respectively reveal the existence of local strong reflectivity in the lower crust and the lower part of the upper crust, which is assumed to be a dike or rock mass formed by the upwelling and cooling down of materials from the upper mantle. Magmatic activity in this part brought about differences in regional stress distribution, which then gave rise to the formation of the deep fault. That is supposed to be the deep structural setting for the Sanhe-Pinggu M8.0 earthquake.展开更多
Earthquake is a kind of sudden and destructive random excitation in nature.It is significant to determine the probability distribution characteristics of the corresponding dynamic indicators to ensure the safety and t...Earthquake is a kind of sudden and destructive random excitation in nature.It is significant to determine the probability distribution characteristics of the corresponding dynamic indicators to ensure the safety and the stability of structures when the intensive seismic excitation,the intensity of which is larger than 7,acts in train-bridge system.Firstly,the motion equations of a two-dimensional train-bridge system under the vertical random excitation of track irregularity and the vertical seismic acceleration are established,where the train subsystem is composed of 8 mutually independent vehicle elements with 48 degrees of freedom,while the single-span simple supported bridge subsystem is composed of 102D beam elements with 20 degrees of freedom on beam and 2 large mass degrees of freedom at the support.Secondly,Monte Carlo method and pseudo excitation method are adopted to analyze the statistical parameters of the system.The power spectrum density of random excitation is used to define a series of non-stationary pseudo excitation in pseudo excitation method and the trigonometric series of random vibration history samples in Monte Carlo method,respectively solved by precise integral method and Newmark-βmethod through the inter-system iterative procedure.Finally,the results are compared with the case under the weak seismic excitation,and show that the samples of vertical acceleration response of bridge and the offload factor of train obeys the normal distribution.In a high probability,the intensive earthquakes pose a greater threat to the safety and stability of bridges and trains than the weak ones.展开更多
The influence of earthquake forces on ultimate bearing capacity of foundations on sloping ground was studied. A solution to seismic ultimate bearing capacity of strip footings on slope was obtained by utilizing pseudo...The influence of earthquake forces on ultimate bearing capacity of foundations on sloping ground was studied. A solution to seismic ultimate bearing capacity of strip footings on slope was obtained by utilizing pseudo-static analysis method and taking the effect of intermediate principal stress into consideration. Based on limit equilibrium theory, the formulae for computing static bearing capacity factors, Nq, Nc, Nγ, and dynamic bearing capacity factors, Nqd, Ned, Nγd, which are associated with surcharge, cohesion and self-weight of soils respectively, were presented. A great number of analysis calculations were carried out to obtain the relationship curves of the static and dynamic bearing capacity factors versus various calculation parameters. The curves can serve as the practical engineering design. The calculation results also show that when the values of horizontal and vertical seismic coefficients are 0.2, the dynamic bearing capacity factors Nqd, Ned and Nγd, in which the effects of intermediate principal stress are taken into consideration, increase by 4%-42%, 3%-27% and 34%-57%, respectively.展开更多
A systematic study of the method of selecting scales in wavelet transform for damping identification in frequency domain was carried out. A method to select the scale with the modulus at the maximum was developed by e...A systematic study of the method of selecting scales in wavelet transform for damping identification in frequency domain was carried out. A method to select the scale with the modulus at the maximum was developed by extending the range of scales. It is proved that using this method in small damping ratio and linear system, we can achieve better results in identification of the closely-spaced model.展开更多
Aim of this article, is to present a methodology for extracting macroseismic intensity information and producing seismic intensity maps from VGI (volunteered geographic information). As a VGI source for obtaining an...Aim of this article, is to present a methodology for extracting macroseismic intensity information and producing seismic intensity maps from VGI (volunteered geographic information). As a VGI source for obtaining and assessing macroseismic observations, the authors chose twitter. Our methodology is validated in two recent earthquakes occurred in Greece: the January 26, 2014 ML = 5.8 in Kefallinia, and the November 17, 2014 ML = 5.2 in Evoikos. Twitter data published within the first 6 h, 12 h, 24 h and 48 h after the earthquake occurrence were analyzed to develop seismic intensity maps. Those maps were evaluated through intensity maps for the same earthquakes, published by international institutes. Evaluation results provide a strong empiric evidence for the credibility of our methodology, the accuracy of the produced seismic intensity maps and accentuate VGI, generated by twitter, as an adequate alternative source for collecting macroseismic information.展开更多
At present,the methods of analyzing the stability of slope under earthquake are not accurate and reasonable because of some limitations. Based on the real dynamic tensile-shear failure mechanism of slope,the paper pro...At present,the methods of analyzing the stability of slope under earthquake are not accurate and reasonable because of some limitations. Based on the real dynamic tensile-shear failure mechanism of slope,the paper proposes dynamic analysis of strength reduction FEM (finite element method) and takes the reduction of shear strength parameters and tensile strength parameters into consideration. And it comprehensively takes the transfixion of the failure surface,the non-convergence of calculation and mutation of displacement as the criterion of dynamic instability and failure of the slope. The strength reduction factor under limit state is regarded as the dynamic safety factor of the slope under earthquake effect and its advantages are introduced. Finally,the method is applied in the seismic design of anchors supporting and anti-slide pile supporting of the slope. Calculation examples show that the application of dynamic analysis of strength reduction is feasible in the seismic design of slope engineering,which can consider dynamic interaction of supporting structure and rock-soil mass. Owing to its preciseness and great advantages,it is a new method in the seismic design of slope supporting.展开更多
On February 11, 1954, an earthquake with Ms7.3 occurred in Shandan county of Hexi corridor,West China. It was the first great earthquake in northwest China after 1949. The earthquake left 47 people dead, 332 people in...On February 11, 1954, an earthquake with Ms7.3 occurred in Shandan county of Hexi corridor,West China. It was the first great earthquake in northwest China after 1949. The earthquake left 47 people dead, 332 people injured and tens of thousands of people homdess; nearly 7277 buildings were damaged or collapsed and the property loss was more than one billion Yuan (RMB) at a rough estimate. In the meizoseismal area, the intensity was Ⅺ, the Hongsihu basin and Shandan County was the most serious damage, and in Shandan, the earthquake-stricken area was 4800 km^2 . In the paper, a brief introduction is presented to the Shandan earthquake, induding the basic parameters, distribution of seismic intensity and natural environment. The characteristics of building destruction are particularly discussed, the earthquake disaster distribution features and economic loss evaluation are also analysed. Finally, causes of the earthquake damage, experiences and lessons as well as implications of protection against earthquake and disaster reduction are summed up.展开更多
It is proposed that some possible macroseismic epicenters can be determined quickly from the relationship that the microseismic epicenters located by instruments bear with faults. Based on these so-called macroseismic...It is proposed that some possible macroseismic epicenters can be determined quickly from the relationship that the microseismic epicenters located by instruments bear with faults. Based on these so-called macroseismic epicenters, we can make fast seismic hazard estimation after a shock by use of the empirical distribution model of seismic intensity. In comparison with the method that uses the microseismic epicenters directly, this approach can increase the precision of fast seismic hazard estimation. Statistical analysis of 133 main earthquakes in China was made. The result shows that the deviation distance between the microseismic epicenter and macroseismic epicenter falls within the range of 35 km for 88 % earthquakes of the total and within the range of 35 to 75 km for the remaining ones. Then, we can take the area that has the microseismic epicenter as its center and is 35 km in radius as the area for emphatic analysis, and take the area within 75 km around the microseismic epicenter as the area for general analysis. The relation between the 66 earthquake cases on the N-S Seismic Belt in China and the spatial distribution characteristics of faults and the results of focal mechanism solution were analyzed in detail. We know from the analysis that the error of instrumental epicenter determination is not the only factor that gives effects to the deviation of the macroseismic epicenter. In addition to it, the fault size, fault distribution, fault activity, fault intersection types, earthquake magnitude, etc. are also main affecting factors. By sorting out, processing and analyzing these affecting factors, the principle and procedures for quickly determining the possible position of the macroseismic epicenter were set up. Taking these as a basis and establishing a nationwide database of faults that contains relevant factors, it is possible to apply this method in practical fast estimation of seismic hazard.展开更多
The intensity of an earthquake is an important criterion and index for earthquake resistance, and disaster relief and for antiseismic engineering in large and medium sized cities. The earthquake data in Xinjiang are a...The intensity of an earthquake is an important criterion and index for earthquake resistance, and disaster relief and for antiseismic engineering in large and medium sized cities. The earthquake data in Xinjiang are abundant and have been widely applied to the statistic relationship of seismic intensity of western China. However, there exists some unreasonable and man_made factors in them. We put forward the idea of area A_ 0-1 to express the effect of seismic intensity, studied the questions and influencing factors arising from uncertainty of intensity zoning and finally, proposed some solutions.展开更多
基金Project supported by the Nonferrous Metal Oriented Advanced Structural Materials and Manufacturing Cooperative Innovation Center,ChinaProject(51205417)supported by the National Natural Science Foundation of China
文摘A SiC/ZrSiO4?SiO2 (SZS) coating was successfully fabricated on the carbon/carbon (C/C) composites by pack cementation, slurry painting and sintering to improve the anti-oxidation property and thermal shock resistance. The anti-oxidation properties under different oxygen partial pressures (OPP) and thermal shock resistance of the SZS coating were investigated. The results show that the SZS coated sample under low OPP, corresponding to the ambient air, during isothermal oxidation was 0.54% in mass gain after 111 h oxidation at 1500 ° C and less than 0.03% in mass loss after 50 h oxidation in high OPP, corresponding to the air flow rate of 36 L/h. Additionally, the residual compressive strengths (RCS) of the SZS coated samples after oxidation for 50 h in high OPP and 80 h in low OPP remain about 70% and 72.5% of those of original C/C samples, respectively. Moreover, the mass loss of SZS coated samples subjected to the thermal cycle from 1500 ° C in high OPP to boiling water for 30 times was merely 1.61%.
基金financially supported by the National Natural Science Foundation of China(Grant No.41502313)the Project of China Geological Survey(Grant No.12120113038000,DD20160271)
文摘Earthquake-induced landslides can seriously aggravate the earthquake's destructive consequences and have caused widespread concern in recent decades. The Xianshuihe fault is a large active left-lateral strike-slip fault in the southeast margin of Qinghai-Tibet Plateau, Southwest China, where the frequent strong earthquakes have brought abundant geo-hazards. This study focuses mainly on exploring and predicting the landslide scenes induced by the potential earthquakes. Firstly, the sophisticated Newmark model is improved through landslide cases induced by the Ms7.9 Luhuo earthquake in 1973 to adapt the field seismotectonics of the Xianshuihe fault zone. Then, it is used to predict the landslide scenes under one speculated potential earthquake scenario with the similar focal mechanism with the Luhuo earthquake. The preliminary results show that the slope displacement resulted from Newmark model can reflect spatial distribution characteristics ofearthquake-induced landslides. The predicted potential earthquake-induced landslide scenes present an obvious extending trend along the Xianshuihe fault. The landslide hazard is greater in the northeast regions than southwest regions of the Xianshuihe fault, where there are more complex topographic conditions. The study procedure will be a helpful demonstration for exploration and prediction of landslide scenes under potential earthquakes in the regions with high seismic activity.
文摘This paper presents the damage in the meizoseismal region of the M_S8.0 Wenchuan earthquake,Sichuan,China,and the seismic intensities determined according to "the Chinese Seismic Intensity Scale",and discusses briefly the types of earthquake-generating faults and some features of seismic damage.
基金the key project of the National Natural Science Foundation of China (No.50438010)
文摘The seismic ductility of reinforced very-high-strength-concrete (VHSC) short columns was studied by combinatively applying axial load and low cyclic lateral load on specimens to simulate seismic impact. Twelve specimens with concrete compressive strength ranging from 95.6 MPa to 118.6 MPa and a shear-span ratio of 2.0 were tested for shear failure pattern and fear force-displacement hysteretic responses. Combinative application of axial load and low cyclic lateral load to VHSC short columns incurs shear failure. The displacement ductility is much smaller when the axial load ratio is larger; whereas a larger stirrup ratio is accompanied with a better displacement ductility. The relationship of displacement ductility factor,μ△, with stirrup characteristic value, λv, and test axial load ratio, nt, is μ△=(1+8λv)/(0.33+nt). By this relationship and relevant codes for aseismatic design, the axial load ratio limits for aseismatic design of reinforced VHSC (C95 to C100) short columns for frame construction are respectively 0.5, 0.6, and 0.7 for seismic classes Ⅰ, Ⅱ, and Ⅲ; corresponding minimum characteristic values of stirrups are calculated according to the required characteristic values of at least 1.273 times of experimental results. These data are very useful to aseismatic engineering.
基金Projects(51878674,52108433,52022113) supported by the National Natural Science Foundation of ChinaProject(2019RS3009) supported by the Hunan Innovative Provincial Construction,China+2 种基金Project(2021JJ40587) supported by the Hunan Provincial Natural Science Foundation of ChinaProject(21B0309) supported by the Research Foundation of Education Bureau of Hunan Province,ChinaProject(HSR202004) supported by the Open Foundation of National Engineering Research Center of High-Speed Railway Construction Technology,China。
文摘China’s high-speed railways are always facing the potential damage risk induced by strong earthquakes.And the route design concept of“using bridge instead of embankment”has also greatly increased the probability of high speed trains moving on bridges when a strong earthquake happens.In the past decades,a bunch of theoretical and numerical studies have been conducted in the seismic dynamic field of high-speed railway.However,the effective dynamic test system for verifying the given method and theoretical results is still lacking.Therefore,a novel dynamic test system(DTS)consisting of a shaking table array and a train-pass-bridge reduced-scale model is proposed in this paper.Through some crucial technical problems discussion,the effectiveness of similar design scheme and the feasibility of reduced-scale DTS are elaborated,and then the detailed DTS structures are given and displayed as part-by-part.On this basis,the demonstration tests are conducted and compared with the numerical simulation.The results show that the proposed DTS is accurate and effective.Therefore,the DTS can provide a new physical simulation approach to study the high-speed train’s running safety on bridges under earthquakes and can also provide a reference for the construction of related systems.
基金This project was supported bythefundamental researchfunds ofYunnan Province
文摘Yunnan is located in the east margin of the collision zone between the India Plate and the Eurasian Plate on the Chinese Continent, where crustal movement is violent and moderatestrong earthquakes are frequent. In addition, the area features marked active block movement. Therefore, Yunnan is a perfect place for research on strong earthquake activity. Through the study on the temporal and spatial distribution of the M ≥ 6.7 earthquakes and the related earthquake dynamics in Yunnan in the last century, we conclude that the four seismically active periods, which are characterized by alternative activity in the east and the west part of Yunnan, possibly result from a combination of active and quiescent periods in each of the east and west part. And for every 100 years, there may be a period in which strong earthquakes occur in the east and west parts simultaneously. In addition, the seismicity of strong earthquakes in Yunnan corresponds well to that in the peripheral region. The seismicity of the great earthquakes in the Andaman-Myanmar Tectonic Arc belt indicates, to some extent, the beginning of a seismically active period in Yunnan. The seismicity of strong earthquakes in east Yunnan is closely related to that in Sichuan. Strong earthquakes in Sichuan often occur later than those in Yunnan. Furthermore, in the east part of Ynnnan, the three procedures including continuous occurrence of moderate-strong earthquake, quiescent period, and the occurrence of the first strong earthquake may be the style of the beginning of the earthquake active period. The above cognition is helpful to the study of earthquake prediction, seismogenic mechanism, and the dynamics of the plate margin in Yunnan.
基金sponsored by the National Basic Research Program(2008CB425700),China
文摘Based on the strong earthquake catalogue, this paper discusses the characteristics of the time series of strong earthquake activities in the world, western Chinese mainland and its peripheral "big triangle seismic region", as well as the Chinese mainland. According to the analysis of the periodic features of global seismicity of M I〉 8. 0 strong events, it is found that there is significant difference in global seismicity before and after the 1960s. Statistical analysis with the Fisher method has revealed that the "big triangular seismic region" has experienced a process of M8.0 earthquake activity with a duration of over a hundred years since 1800. Further analysis shows that the global seismicity and the "big triangular seismic region" possibly has a period of a hundred-year scale, and has quasi- synchronicity to a certain extent. The shallow earthquake activity of Ms I〉 7. 0 in the Chinese mainland is obviously controlled by the seismicity in the big triangular seismic region and by global seismicity in a larger spatial-scale. In terms of the time series of these earthquakes, the seismicity shows a decadal and century-scale activity patterns.
基金sponsored by the Special Basic Scientific Research Program of Institute of Earthquake Science(02092425),China Earthquake Administration
文摘Previous studies have shown that the active tectonic block boundaries in the Chinese mainland are the main belts and concentration areas of strong earthquakes occurring in the Chinese mainland.It is essential to carry out follow-up analysis of strong earthquake risk of active tectonic block boundaries.In this paper,we carry out the analysis on the tendency of strong earthquakes along each active tectonic block boundary from three aspects respectively,including the evolutionary characteristics of the Load/Unload Response Ratio time series,the probability method based on the log-normal distribution function,and variation of b value.The estimation of strong earthquake criticality on each active tectonic block boundary is done based on the evolutionary characteristics of the Load/Unload Response Ratio time series,the cumulative probability and conditional probability,and the decrease of the b value.Finally,according to the results of analyses on the above three aspects,the potential strong earthquake areas in the forthcoming 5 years in the Chinese mainland are discussed.
基金sponsored by the Teacher's Scientific Research Fund of the China Earthquake Administration(20090103)
文摘The relationships between Earth's rotation and the 1975 Haicheng, Liaoning Ms7.3 earthquake, 2008 Wenchuan, Sichuan Ms8.0 earthquake and the 2004 Sumatra Msg. 0 earthquake, as well as moderate-small earthquakes occurring around the epicenter regions prior to them are investigated in this study. The obtained results could benefit the further understanding of the relationship between the Earth's rotation and earthquakes.
文摘To retrofit and strengthen existing unreinforced masonry (URM) structures to resist the potential earthquake damages has become an important issue in Australia. In order to secure the performance of URM under seismic loading in the future, a research project was carried out aimed at developing a simple and high strength seismic retrofitting technique for masonry structures. A series of experimental testing on URM walls retrofitted with an innovative technique by cable system have been conducted. The results indicated that both the strength and ductility of the tested speci-mens were significantly enhanced with the technique. An analytical model which is based on Dis-tinct Element Method (DEM) has also been developed to simulate the behaviour of URM walls be-fore and after retrofitting. The model is then further developed by applying a seismic wave to the wall to simulate the wall behavior under earthquake loads before and after retrofitting.
文摘Two near-vertical deep seismic reflection profiles (140km-long, 24-fold) were completed in the 1679 Sanhe-Pinggu earthquake (M8.0) region. The profiles ran through the Xiadian fault and the Ershilichangshan fault. The profiling result shows that the crust in this region is divided into the upper crust, the lower crust and the crust-mantle transitional zone by two powerful laminated reflectors: one at the two-way travel-time of about 7.0s (21km), the other at about 11.0~12.5s (33~37km). Crustal structure varies significantly in vertical direction. The shallow part is characterized by obvious stratification, multilayers and complexity. The upper crust on the whole features reflection “transparency”, while the lower crust features distinct reflectivity. Crustal structure also varies a lot in the lateral direction. The main fracture in this region is the deep fault under the Xiadian fault. This deep fault is steeply inclined (nearly vertical), and is supposed to be the causative fault of the Sanhe-Pinggu M8.0 earthquake. The two profiles respectively reveal the existence of local strong reflectivity in the lower crust and the lower part of the upper crust, which is assumed to be a dike or rock mass formed by the upwelling and cooling down of materials from the upper mantle. Magmatic activity in this part brought about differences in regional stress distribution, which then gave rise to the formation of the deep fault. That is supposed to be the deep structural setting for the Sanhe-Pinggu M8.0 earthquake.
基金Project(52178101) supported by the National Natural Science Foundation of China。
文摘Earthquake is a kind of sudden and destructive random excitation in nature.It is significant to determine the probability distribution characteristics of the corresponding dynamic indicators to ensure the safety and the stability of structures when the intensive seismic excitation,the intensity of which is larger than 7,acts in train-bridge system.Firstly,the motion equations of a two-dimensional train-bridge system under the vertical random excitation of track irregularity and the vertical seismic acceleration are established,where the train subsystem is composed of 8 mutually independent vehicle elements with 48 degrees of freedom,while the single-span simple supported bridge subsystem is composed of 102D beam elements with 20 degrees of freedom on beam and 2 large mass degrees of freedom at the support.Secondly,Monte Carlo method and pseudo excitation method are adopted to analyze the statistical parameters of the system.The power spectrum density of random excitation is used to define a series of non-stationary pseudo excitation in pseudo excitation method and the trigonometric series of random vibration history samples in Monte Carlo method,respectively solved by precise integral method and Newmark-βmethod through the inter-system iterative procedure.Finally,the results are compared with the case under the weak seismic excitation,and show that the samples of vertical acceleration response of bridge and the offload factor of train obeys the normal distribution.In a high probability,the intensive earthquakes pose a greater threat to the safety and stability of bridges and trains than the weak ones.
基金Project (05GK3024) supported by the Program of Hunan Provincial Science and Technology
文摘The influence of earthquake forces on ultimate bearing capacity of foundations on sloping ground was studied. A solution to seismic ultimate bearing capacity of strip footings on slope was obtained by utilizing pseudo-static analysis method and taking the effect of intermediate principal stress into consideration. Based on limit equilibrium theory, the formulae for computing static bearing capacity factors, Nq, Nc, Nγ, and dynamic bearing capacity factors, Nqd, Ned, Nγd, which are associated with surcharge, cohesion and self-weight of soils respectively, were presented. A great number of analysis calculations were carried out to obtain the relationship curves of the static and dynamic bearing capacity factors versus various calculation parameters. The curves can serve as the practical engineering design. The calculation results also show that when the values of horizontal and vertical seismic coefficients are 0.2, the dynamic bearing capacity factors Nqd, Ned and Nγd, in which the effects of intermediate principal stress are taken into consideration, increase by 4%-42%, 3%-27% and 34%-57%, respectively.
文摘A systematic study of the method of selecting scales in wavelet transform for damping identification in frequency domain was carried out. A method to select the scale with the modulus at the maximum was developed by extending the range of scales. It is proved that using this method in small damping ratio and linear system, we can achieve better results in identification of the closely-spaced model.
文摘Aim of this article, is to present a methodology for extracting macroseismic intensity information and producing seismic intensity maps from VGI (volunteered geographic information). As a VGI source for obtaining and assessing macroseismic observations, the authors chose twitter. Our methodology is validated in two recent earthquakes occurred in Greece: the January 26, 2014 ML = 5.8 in Kefallinia, and the November 17, 2014 ML = 5.2 in Evoikos. Twitter data published within the first 6 h, 12 h, 24 h and 48 h after the earthquake occurrence were analyzed to develop seismic intensity maps. Those maps were evaluated through intensity maps for the same earthquakes, published by international institutes. Evaluation results provide a strong empiric evidence for the credibility of our methodology, the accuracy of the produced seismic intensity maps and accentuate VGI, generated by twitter, as an adequate alternative source for collecting macroseismic information.
基金Financial Support by Special Research fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology) (GZ2009-14)Special Research fund of Minis-try of Education Key Laboratory of Urban Security and Disaster Engineering
文摘At present,the methods of analyzing the stability of slope under earthquake are not accurate and reasonable because of some limitations. Based on the real dynamic tensile-shear failure mechanism of slope,the paper proposes dynamic analysis of strength reduction FEM (finite element method) and takes the reduction of shear strength parameters and tensile strength parameters into consideration. And it comprehensively takes the transfixion of the failure surface,the non-convergence of calculation and mutation of displacement as the criterion of dynamic instability and failure of the slope. The strength reduction factor under limit state is regarded as the dynamic safety factor of the slope under earthquake effect and its advantages are introduced. Finally,the method is applied in the seismic design of anchors supporting and anti-slide pile supporting of the slope. Calculation examples show that the application of dynamic analysis of strength reduction is feasible in the seismic design of slope engineering,which can consider dynamic interaction of supporting structure and rock-soil mass. Owing to its preciseness and great advantages,it is a new method in the seismic design of slope supporting.
基金This research was funded by the Joint Earthquake Science Foundation of China with Grant No.197025,504004 and 106086Contributions number: LC20070033 of the Lanzhou Institute of Seismology,CEA
文摘On February 11, 1954, an earthquake with Ms7.3 occurred in Shandan county of Hexi corridor,West China. It was the first great earthquake in northwest China after 1949. The earthquake left 47 people dead, 332 people injured and tens of thousands of people homdess; nearly 7277 buildings were damaged or collapsed and the property loss was more than one billion Yuan (RMB) at a rough estimate. In the meizoseismal area, the intensity was Ⅺ, the Hongsihu basin and Shandan County was the most serious damage, and in Shandan, the earthquake-stricken area was 4800 km^2 . In the paper, a brief introduction is presented to the Shandan earthquake, induding the basic parameters, distribution of seismic intensity and natural environment. The characteristics of building destruction are particularly discussed, the earthquake disaster distribution features and economic loss evaluation are also analysed. Finally, causes of the earthquake damage, experiences and lessons as well as implications of protection against earthquake and disaster reduction are summed up.
基金the Key Project (9502020104)from China Seismological Bureau under the " Ninth Five-year Plan" , China.
文摘It is proposed that some possible macroseismic epicenters can be determined quickly from the relationship that the microseismic epicenters located by instruments bear with faults. Based on these so-called macroseismic epicenters, we can make fast seismic hazard estimation after a shock by use of the empirical distribution model of seismic intensity. In comparison with the method that uses the microseismic epicenters directly, this approach can increase the precision of fast seismic hazard estimation. Statistical analysis of 133 main earthquakes in China was made. The result shows that the deviation distance between the microseismic epicenter and macroseismic epicenter falls within the range of 35 km for 88 % earthquakes of the total and within the range of 35 to 75 km for the remaining ones. Then, we can take the area that has the microseismic epicenter as its center and is 35 km in radius as the area for emphatic analysis, and take the area within 75 km around the microseismic epicenter as the area for general analysis. The relation between the 66 earthquake cases on the N-S Seismic Belt in China and the spatial distribution characteristics of faults and the results of focal mechanism solution were analyzed in detail. We know from the analysis that the error of instrumental epicenter determination is not the only factor that gives effects to the deviation of the macroseismic epicenter. In addition to it, the fault size, fault distribution, fault activity, fault intersection types, earthquake magnitude, etc. are also main affecting factors. By sorting out, processing and analyzing these affecting factors, the principle and procedures for quickly determining the possible position of the macroseismic epicenter were set up. Taking these as a basis and establishing a nationwide database of faults that contains relevant factors, it is possible to apply this method in practical fast estimation of seismic hazard.
文摘The intensity of an earthquake is an important criterion and index for earthquake resistance, and disaster relief and for antiseismic engineering in large and medium sized cities. The earthquake data in Xinjiang are abundant and have been widely applied to the statistic relationship of seismic intensity of western China. However, there exists some unreasonable and man_made factors in them. We put forward the idea of area A_ 0-1 to express the effect of seismic intensity, studied the questions and influencing factors arising from uncertainty of intensity zoning and finally, proposed some solutions.