期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
核矩阵协同进化的震荡搜索粒子群优化算法 被引量:7
1
作者 戴月明 朱达祥 吴定会 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2016年第2期247-253,共7页
针对粒子群算法搜索后期易陷入局部极值的缺点,提出一种基于核矩阵协同进化的震荡搜索粒子群优化(kenel matrix synergistic evolution shock search particle swarm optimization,KMSESPSO)算法,该算法对粒子进行局部与全局结合的震荡... 针对粒子群算法搜索后期易陷入局部极值的缺点,提出一种基于核矩阵协同进化的震荡搜索粒子群优化(kenel matrix synergistic evolution shock search particle swarm optimization,KMSESPSO)算法,该算法对粒子进行局部与全局结合的震荡搜索,且当整个粒子种群陷入停滞状态时,利用核矩阵对特定粒子组进行协同进化以扩大种群的多样性。实验结果表明,KMSESPSO算法有效提高了粒子的全局搜索能力,既避免粒子种群易早熟收敛,又较好地提高寻优精度、加快收敛速度,且有一定的鲁棒性。 展开更多
关键词 粒子群优化算法 震荡搜索 核矩阵 协同进化
下载PDF
协同震荡搜索混沌粒子群求解资源受限项目调度问题 被引量:2
2
作者 戴月明 汤继涛 纪志成 《计算机应用》 CSCD 北大核心 2014年第6期1798-1802,共5页
针对求解资源受限项目调度问题(RCPSP),提出了协同震荡搜索混沌粒子群(CSCPSO)算法。算法围绕种群粒子吸引子建立双向协同震荡搜索机制,该机制一方面使粒子向吸引子收敛,另一方面使粒子震荡调整自身与吸引子相邻维度大小关系不一致的维... 针对求解资源受限项目调度问题(RCPSP),提出了协同震荡搜索混沌粒子群(CSCPSO)算法。算法围绕种群粒子吸引子建立双向协同震荡搜索机制,该机制一方面使粒子向吸引子收敛,另一方面使粒子震荡调整自身与吸引子相邻维度大小关系不一致的维度,提升算法的搜索精度和种群的多样性。项目调度采用基于粒子的拓扑排序和串行项目进度生成机制,保证项目调度解决方案满足资源约束和紧前约束。采用具体算例对算法进行检验,结果表明该算法在求解RCPSP的精度和稳定性方面表现更优。 展开更多
关键词 协同震荡搜索 混沌 粒子群优化算法 拓扑排序 资源受限项目调度问题
下载PDF
内嵌区域震荡搜索的粒子群优化算法 被引量:6
3
作者 汤继涛 戴月明 《计算机工程与应用》 CSCD 2013年第21期33-36,共4页
针对粒子群优化算法早熟收敛现象,提出了一种改进的粒子群优化算法。新算法在粒子群中的每个粒子吸引子的基础上引入了区域震荡搜索因子。每个粒子在协同收敛的同时,震荡搜索粒子极值位置周围区域,增加种群的多样性,提升算法的全局寻优... 针对粒子群优化算法早熟收敛现象,提出了一种改进的粒子群优化算法。新算法在粒子群中的每个粒子吸引子的基础上引入了区域震荡搜索因子。每个粒子在协同收敛的同时,震荡搜索粒子极值位置周围区域,增加种群的多样性,提升算法的全局寻优能力,有效避免算法陷入局部收敛。仿真结果表明,改进后的算法在收敛精度上得到显著的改善。 展开更多
关键词 粒子群优化 早熟收敛 区域震荡搜索 全局优化
下载PDF
吸引子权重改变内嵌区域震荡搜索粒子群算法
4
作者 朱沛 范年柏 《计算机工程与应用》 CSCD 北大核心 2016年第1期141-145,共5页
针对粒子群算法搜索精度不高、搜索最优解较慢的问题,提出了一种改进的粒子群算法。该算法通过调整全局最优解和个体最优解,形成一个新的全局吸引子解指导粒子收敛,优化种群粒子来搜索解空间的最优值。再将优化方案融入到内嵌区域震荡... 针对粒子群算法搜索精度不高、搜索最优解较慢的问题,提出了一种改进的粒子群算法。该算法通过调整全局最优解和个体最优解,形成一个新的全局吸引子解指导粒子收敛,优化种群粒子来搜索解空间的最优值。再将优化方案融入到内嵌区域震荡搜索的粒子群算法(RSPSO)中,仿真结果表明,改进的粒子群算法在寻优能力及搜索精度方面都得到了进一步的提高。 展开更多
关键词 群体智能 粒子群优化 权重 吸引子 内嵌区域震荡搜索
下载PDF
基于离散震荡粒子群算法的柔性作业车间调度优化方法 被引量:1
5
作者 马立波 王艳 《机械制造与自动化》 2016年第2期231-235,共5页
提出了一种离散震荡粒子群算法与细菌觅食算法优化融合的混合智能算法,并将其应用于离散型柔性车间调度问题中。该算法利用离散震荡粒子群算法对不断更新的粒子的每一维进行适当震荡搜索操作,并引入细菌觅食算法中的趋同操作作为局部搜... 提出了一种离散震荡粒子群算法与细菌觅食算法优化融合的混合智能算法,并将其应用于离散型柔性车间调度问题中。该算法利用离散震荡粒子群算法对不断更新的粒子的每一维进行适当震荡搜索操作,并引入细菌觅食算法中的趋同操作作为局部搜索策略,对整个种群中的最优粒子进行邻域搜索,提高最优解的精度。最后利用实际生产数据,对实际生产过程进行仿真。仿真结果表明:所提出的算法收敛速度较快,收敛精度有明显的提高,对于实际调度问题具有一定的理论价值和指导意义。 展开更多
关键词 离散震荡粒子群 细菌觅食 柔性车间调度 区域震荡搜索 趋同操作 邻域搜索
下载PDF
改进的带有局部搜索算子的量子粒子群算法 被引量:2
6
作者 蔡继亮 叶微 《计算机工程与设计》 CSCD 北大核心 2010年第14期3264-3267,共4页
带有局部搜索算子的量子粒子群算法(MQPSO-LQPSO)是一种较成功的改进的QPSO算法,但是该算法在搜索震荡的不足,在一定程度上降低了搜索效率。针对该问题,提出了一种改进方法,将LQPSO搜索得到的最优粒子替换MQPSO的Gbest和当前群中适应度... 带有局部搜索算子的量子粒子群算法(MQPSO-LQPSO)是一种较成功的改进的QPSO算法,但是该算法在搜索震荡的不足,在一定程度上降低了搜索效率。针对该问题,提出了一种改进方法,将LQPSO搜索得到的最优粒子替换MQPSO的Gbest和当前群中适应度最佳的粒子和最差的粒子。在标准测试函数上的仿真实验结果表明,改进的算法在不改变原有算法框架和不引入新的参数条件下,提高了MQPSO-LQPSO的搜索能力和计算效率。 展开更多
关键词 量子粒子群算法 局部搜索算子 搜索震荡 MQPSO当前群中最佳粒子 搜索效率
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部