In many eukaryotic organisms, Cdcl4 phosphatase regulates multiple biological events during anaphase and is essential for mitosis. It has been shown that Cdcl4 is required for sporulation in the potato blight pathogen...In many eukaryotic organisms, Cdcl4 phosphatase regulates multiple biological events during anaphase and is essential for mitosis. It has been shown that Cdcl4 is required for sporulation in the potato blight pathogen Phytophthora infestans; howev- er, the role that the Cdcl4 homolog (PsCdcl4) plays in the soil-borne soybean root rot pathogen P. sojae remains ambiguous. PsCdc14 is highly expressed in spornlation, zoospore, and cyst life stages, but not in vegetative mycelia and infection stages, suggesting that it contributes to asexual reproduction and thus the spread of the disease. Double-stranded RNA (dsRNA) medi- ates gene silencing, a post-transcriptional and highly conserved process in eukaryotes, involving specific gene silencing through degradation of target mRNA. We combined in vitro dsRNA synthesis and a polyethylene glycol-mediated transfor- marion system to construct a dsRNA-mediated transient gene silencing system; and then performed a functional analysis of PsCdcl4 in P. sojae. PsCdc14 mRNA was dramatically reduced in transformants after protoplasts were exposed in in vitro synthesized PsCdc14 dsRNA, resulting in low sporangial production and abnormal development in P. sojae silencing lines. Furthermore, dsRNA-mediated transient gene silencing could enable elucidation of P. sojae rapid gene function, facilitating our understanding of the development and pathogenicity mechanisms of this oomycete fungus.展开更多
基金supported by the Special Fund for Agro-Scientific Research in the Public Interest (Grant No. 3-20) from the Chinese governmentthe Priority Academic Program Development for Jiangsu Higher Education Institutions
文摘In many eukaryotic organisms, Cdcl4 phosphatase regulates multiple biological events during anaphase and is essential for mitosis. It has been shown that Cdcl4 is required for sporulation in the potato blight pathogen Phytophthora infestans; howev- er, the role that the Cdcl4 homolog (PsCdcl4) plays in the soil-borne soybean root rot pathogen P. sojae remains ambiguous. PsCdc14 is highly expressed in spornlation, zoospore, and cyst life stages, but not in vegetative mycelia and infection stages, suggesting that it contributes to asexual reproduction and thus the spread of the disease. Double-stranded RNA (dsRNA) medi- ates gene silencing, a post-transcriptional and highly conserved process in eukaryotes, involving specific gene silencing through degradation of target mRNA. We combined in vitro dsRNA synthesis and a polyethylene glycol-mediated transfor- marion system to construct a dsRNA-mediated transient gene silencing system; and then performed a functional analysis of PsCdcl4 in P. sojae. PsCdc14 mRNA was dramatically reduced in transformants after protoplasts were exposed in in vitro synthesized PsCdc14 dsRNA, resulting in low sporangial production and abnormal development in P. sojae silencing lines. Furthermore, dsRNA-mediated transient gene silencing could enable elucidation of P. sojae rapid gene function, facilitating our understanding of the development and pathogenicity mechanisms of this oomycete fungus.