The sixth-order accurate phase error flux-corrected transport numerical algorithm is introduced, and used to simulate Kelvin-Helmholtz instability. Linear growth rates of the simulation agree with the linear theories ...The sixth-order accurate phase error flux-corrected transport numerical algorithm is introduced, and used to simulate Kelvin-Helmholtz instability. Linear growth rates of the simulation agree with the linear theories of Kelvin Helmholtz instability. It indicates the validity and accuracy of this simulation method. The method also has good capturing ability of the instability interface deformation.展开更多
This paper studies the phase effect in mode coupling of Kelvin-Helmholtz instability in two-dimensionalincompressible fluid.It is found that there is an important growth phenomenon of every mode in the mode couplingpr...This paper studies the phase effect in mode coupling of Kelvin-Helmholtz instability in two-dimensionalincompressible fluid.It is found that there is an important growth phenomenon of every mode in the mode couplingprocess.The growth changes periodically with phase difference and in the condition of our simulation the period is about0.7π.The period characteristic is apparent in all stage of the mode coupling process,especially in the relatively laterstage.展开更多
基金supported by the National Basic Research Program(973 Program)under Grant No.2007CB815100the Research Fund for the Doctoral Program of Higher Education of China under Grant No.20070290008
文摘The sixth-order accurate phase error flux-corrected transport numerical algorithm is introduced, and used to simulate Kelvin-Helmholtz instability. Linear growth rates of the simulation agree with the linear theories of Kelvin Helmholtz instability. It indicates the validity and accuracy of this simulation method. The method also has good capturing ability of the instability interface deformation.
基金Supported by the National Basic Research Program of China under Grant No.2007CB815100the Research Fund for the Doctoral Program of Higher Education of China under Grant No.20070290008the National Natural Science Foundation of China under Grant Nos.10775020 and 10874242
文摘This paper studies the phase effect in mode coupling of Kelvin-Helmholtz instability in two-dimensionalincompressible fluid.It is found that there is an important growth phenomenon of every mode in the mode couplingprocess.The growth changes periodically with phase difference and in the condition of our simulation the period is about0.7π.The period characteristic is apparent in all stage of the mode coupling process,especially in the relatively laterstage.