Industrial production originally restricted to factory houses is now either arranged in unenclosed, roofed spaces or partially and entirely open buildings. Such a strategy would bring both social and economic benefits...Industrial production originally restricted to factory houses is now either arranged in unenclosed, roofed spaces or partially and entirely open buildings. Such a strategy would bring both social and economic benefits. The first advantage would be economy of infrastructure investment. For normal projects, civil engineering would take about 25~40 % of the total investment. In the petrochemical sector with factories largely or entirely in the open, civil engineering investment would take about 10~14 %. The second advantage is that the construction cycle would be shortened. In the process of construction, civil works usually take the longest cycle and it follows that the shortening of civil construction period entails most patent economic benefits. The value incurred would usually surpass the value realized by the contraction of civil works. Thirdly, it will occupy less land and play a positive role in technical renovation. Finally, some industrial production tends to produce too much heat or even poison. Open production would reduce the relevant cost of treatment.展开更多
The ecological costs of open pit metal mining are quantified, which include lost value of direct eco-services, lost value of indirect eco-services, prevention and restoration costs, and cost of carbon emission from en...The ecological costs of open pit metal mining are quantified, which include lost value of direct eco-services, lost value of indirect eco-services, prevention and restoration costs, and cost of carbon emission from energy consumption. These ecological costs are incorporated in an iterative ultimate pit optimization algorithm. A case study is presented to demonstrate the influence of ecological costs on pit design outcome. The results show that it is possible to internalize ecological costs in mine designs. The pit optimization outcome shifts considerably to the conservative side and the profitability decreases substantially when ecological costs are accounted for.展开更多
Three important aspects of phase-mining must be optimized:the number of phases,the geometry and location of each phase-pit(including the ultimate pit),and the ore and waste quantities to be mined in each phase.A model...Three important aspects of phase-mining must be optimized:the number of phases,the geometry and location of each phase-pit(including the ultimate pit),and the ore and waste quantities to be mined in each phase.A model is presented,in which a sequence of geologically optimum pits is first generated and then dynamically evaluated to simultaneously optimize the above three aspects,with the objective of maximizing the overall net present value.In this model,the dynamic nature of the problem is fully taken into account with respect to both time and space,and is robust in accommodating different pit wall slopes and different bench heights.The model is applied to a large deposit consisting of 2044 224 blocks and proved to be both efficient and practical.展开更多
Orebody-rendering techniques are developed using the marching cubes (MC) algorithm. The shape of an orebody is viv- idly displayed in real time and can be used to guide mining design as well. The MC algorithm has been...Orebody-rendering techniques are developed using the marching cubes (MC) algorithm. The shape of an orebody is viv- idly displayed in real time and can be used to guide mining design as well. The MC algorithm has been improved in two aspects. By analyzing the principles of the MC algorithm, as well as the features of the specific application, improvements were developed to: eliminate ambiguities by using a unified isosurface constructing method in the voxels, and improve the operating efficiency of the MC algorithm by incorporating an octree structure. The analytical results of the examples demonstrate the effectiveness of our proposal.展开更多
The present study reflects upon the results of substantial program of two-dimensional Finite Element Method (FEM) numerical analyses of the open pit that links to slope angle optimization associated with the safety ...The present study reflects upon the results of substantial program of two-dimensional Finite Element Method (FEM) numerical analyses of the open pit that links to slope angle optimization associated with the safety factor of the pit slope of a coal mine in Bangladesh. In the present analyses, two types of models have been presented. The first model estimates safety factor without seismic effect on the overall pit slope of the model; the second model incorporates safety factor with seismic stability of the model. The calculated optimum slope angle of the first model is 31% with a rational safety factor of 1.51, prior to the seismic effect. However, the value is reduced to 0.93, 0.82, and 0.72, after we applies the seismic effect in the second model with M6, M6.5, and M7, respectively. Finally, our modeling results emphasize that for the case of the proposed Phulbari coalmine, there is extremely high prospect for causing massive slope failure along the optimum pit slope angle with 31% if the mine area felt seismic shaking, like the Sikkim (in northern India) earthquake with M6.9 on September 18, 2011.展开更多
In order to study the effects of soil compaction, and soil physical and chemicalcharacteristics after land reclamation, selected lands that were reclaimed after 1, 2, 3, 4,and 5 a, respectively, in the Majiata Mine of...In order to study the effects of soil compaction, and soil physical and chemicalcharacteristics after land reclamation, selected lands that were reclaimed after 1, 2, 3, 4,and 5 a, respectively, in the Majiata Mine of the Shendong Open Pit; tested the effects ofsoil compaction; and collected soil samples from 5 different depths, which are 0-7.62,7.62-15.24, 15.24-22.86, 22.86-30.48, and 30.48-38.10 cm, respectively. The resultsshow that: Land reclamation leads to soil compaction. The lowest effect of soil compaction is in the top layer and the highest one at the depth of 20-30 cm; The bulk density of reclaimed soil is higher than that of undisturbed soil; this declines with the reclamation and nearly reaches the level of undisturbed soil after 5-year reclamation;The content of reclaimed soil nutrients is lower than that of undisturbed soil. The lowest one is inthe soil dumping site, which reaches the level of undisturbed soil after 5-year reclamation;The pH value of reclaimed soil is lower than that of undisturbed soil. The highest one isin the soil dumping site; this declines with the reclamation.展开更多
Near-surface deposits that extend to considerable depths are often amenable to both open pit mining and/or underground mining. This paper investigates the strategy of mining options for an orebody using a Mixed Intege...Near-surface deposits that extend to considerable depths are often amenable to both open pit mining and/or underground mining. This paper investigates the strategy of mining options for an orebody using a Mixed Integer Linear Programming(MILP) optimization framework. The MILP formulation maximizes the Net Present Value(NPV) of the reserve when extracted with(i) open pit mining,(ii) underground mining, and(iii) concurrent open pit and underground mining. Comparatively, implementing open pit mining generates a higher NPV than underground mining. However considering the investment required for these mining options, underground mining generates a better return on investment than open pit mining. Also, in the concurrent open pit and underground mining scenario, the optimizer prefers extracting blocks using open pit mining. Although the underground mine could access ore sooner, the mining cost differential for open pit mining is more than compensated for by the discounting benefits associated with earlier underground mining.展开更多
Pit optimisation is the earliest and most established application of its kind in the minerals industry, but this has been primarily driven by metal, not coal. Coal has the same financial drivers for resource optimisat...Pit optimisation is the earliest and most established application of its kind in the minerals industry, but this has been primarily driven by metal, not coal. Coal has the same financial drivers for resource optimisation as does the metalliferous industry, yet pit optimisation is not common practice. Why? The following discussion presents the basics of pit optimisation as they relate to coal and illustrates how a technology developed for massive deposits is not suitable for thin, multi-seam deposits where mine planning is often driven more by product quality than by value drivers such as Net Present Value. An alternative methodology is presented that takes advantage of the data structure of bedded deposits to optimise resource recovery in terms of a production schedule that meets constraints on coal quality.展开更多
Drilling and blasting play vital roles in opencast mining. These operations not only affect the cost of production directly but as well and significantly, the overall operational costs. This research was carried out t...Drilling and blasting play vital roles in opencast mining. These operations not only affect the cost of production directly but as well and significantly, the overall operational costs. This research was carried out to find a possible way of optimizing the drilling and blasting operations in an open pit mine of Somair (Société des Mines de l’Air), in the Niger Republic. In order to optimize the drilling operation, the time taken by two drilling machines to accomplish the same task was analyzed statistically. The result indicates that the Down the Hole Hammer Drilling Rig (DMNo406) is more efficient than the Drill Master (DM405). The relative unit consumption of two explosives (Explus and Nitram 9), when used under the same operating conditions, were also considered and the results indicate Explus to be more economical per unit consumption with a range of 0.15 g/t–0.183 g/t, when compared with Nitram 9 with a unit consumption range of 0.19 g/t-0.24 g/t in the study area.展开更多
Leaving ditches between adjacent mining areas can effectively reduce re-stripping in the latter mining area and simultaneously lead to an increment in internal dumping costs in the former mining area. This paper estab...Leaving ditches between adjacent mining areas can effectively reduce re-stripping in the latter mining area and simultaneously lead to an increment in internal dumping costs in the former mining area. This paper establishes calculation models for these two marginal costs. The optimizing model for slope cover height can be determined by including marginal cost models in the objective function. The paper has two main contributions:(a) it fully considers redistribution of dumping space in the model;(b) it introduces price fluctuations and cash discounts in the model. We use the typical open-pit mine as an example to test and prove the model. We conclude that a completely covered slope is reasonable in Haerwusu open pit mine; in addition to an increasing price index, the slope cover height can be reduced; and that price changes are one of the most important influencing factors of slope cover height optimization in an open-pit mine.展开更多
Energy sector represents a key industrial branch for national, environmental and economic success. With its exclusive access to domestic deposits, lignite industry represents a guarantor of reliable raw materials, off...Energy sector represents a key industrial branch for national, environmental and economic success. With its exclusive access to domestic deposits, lignite industry represents a guarantor of reliable raw materials, offering long-term supply security based on verified reserves. Currently operated coalmines in Serbia (Kolubara and Kostolac) have production around 36 million tons of lignite, and over 108 million m3 of overburden. Consequently, sustainability of lignite production requires cost reduction and environmental protection, as well as capacity increase. In order to rationalise, and increase efficiency of Serbian lignite mines, it is necessary to focus the activities on major issues shown within the triangle of energy policy objectives (security of supply, competi- tive prices and environmental protection). Production process optimisation singled out several special programs. Equipment revi- talization and modernization is necessary taking into account that majority of the currently operated machinery has a life up to 25 years. Production process automation would enable high level of technical operation in the field of open cast mines management. Lack of coal quality uniformity is the permanent problem resulting by great amounts of coal reserves to be used uneconomically. Planning and training at all levels and finally cooperative software for business procedures and work order management. The measures suggested are a key precondition for maintaining competitive position of lignite production on international level.展开更多
文摘Industrial production originally restricted to factory houses is now either arranged in unenclosed, roofed spaces or partially and entirely open buildings. Such a strategy would bring both social and economic benefits. The first advantage would be economy of infrastructure investment. For normal projects, civil engineering would take about 25~40 % of the total investment. In the petrochemical sector with factories largely or entirely in the open, civil engineering investment would take about 10~14 %. The second advantage is that the construction cycle would be shortened. In the process of construction, civil works usually take the longest cycle and it follows that the shortening of civil construction period entails most patent economic benefits. The value incurred would usually surpass the value realized by the contraction of civil works. Thirdly, it will occupy less land and play a positive role in technical renovation. Finally, some industrial production tends to produce too much heat or even poison. Open production would reduce the relevant cost of treatment.
基金Project(50974041)supported by the National Natural Science Foundation of ChinaProject(NCET-11-0073)supported by Program for New Century Excellent Talents in University of Ministry of Education of China+1 种基金Project(201102065)supported by the Natural Science Foundation of Liaoning Province,ChinaProject(2012921075)supported by the Ten Million Talent Project of Liaoning Province,China
文摘The ecological costs of open pit metal mining are quantified, which include lost value of direct eco-services, lost value of indirect eco-services, prevention and restoration costs, and cost of carbon emission from energy consumption. These ecological costs are incorporated in an iterative ultimate pit optimization algorithm. A case study is presented to demonstrate the influence of ecological costs on pit design outcome. The results show that it is possible to internalize ecological costs in mine designs. The pit optimization outcome shifts considerably to the conservative side and the profitability decreases substantially when ecological costs are accounted for.
基金Project(50974041) supported by the National Natural Science Foundation of ChinaProject(20090042120040) supported by the Doctoral Program Foundation of the Ministry of Education, ChinaProject(20093910) supported by the Natural Science Foundation of Liaoning Province, China
文摘Three important aspects of phase-mining must be optimized:the number of phases,the geometry and location of each phase-pit(including the ultimate pit),and the ore and waste quantities to be mined in each phase.A model is presented,in which a sequence of geologically optimum pits is first generated and then dynamically evaluated to simultaneously optimize the above three aspects,with the objective of maximizing the overall net present value.In this model,the dynamic nature of the problem is fully taken into account with respect to both time and space,and is robust in accommodating different pit wall slopes and different bench heights.The model is applied to a large deposit consisting of 2044 224 blocks and proved to be both efficient and practical.
基金Projects 20020008006 supported by the Exclusive Research Foundation for Doctoral Programs by Ministry of Education of China2006BAK04B04 by the National Key Project of Scientific and Technical Supporting Programs Funded by Ministry of Science & Technology of China
文摘Orebody-rendering techniques are developed using the marching cubes (MC) algorithm. The shape of an orebody is viv- idly displayed in real time and can be used to guide mining design as well. The MC algorithm has been improved in two aspects. By analyzing the principles of the MC algorithm, as well as the features of the specific application, improvements were developed to: eliminate ambiguities by using a unified isosurface constructing method in the voxels, and improve the operating efficiency of the MC algorithm by incorporating an octree structure. The analytical results of the examples demonstrate the effectiveness of our proposal.
文摘The present study reflects upon the results of substantial program of two-dimensional Finite Element Method (FEM) numerical analyses of the open pit that links to slope angle optimization associated with the safety factor of the pit slope of a coal mine in Bangladesh. In the present analyses, two types of models have been presented. The first model estimates safety factor without seismic effect on the overall pit slope of the model; the second model incorporates safety factor with seismic stability of the model. The calculated optimum slope angle of the first model is 31% with a rational safety factor of 1.51, prior to the seismic effect. However, the value is reduced to 0.93, 0.82, and 0.72, after we applies the seismic effect in the second model with M6, M6.5, and M7, respectively. Finally, our modeling results emphasize that for the case of the proposed Phulbari coalmine, there is extremely high prospect for causing massive slope failure along the optimum pit slope angle with 31% if the mine area felt seismic shaking, like the Sikkim (in northern India) earthquake with M6.9 on September 18, 2011.
基金Supported by the China Postdoctoral Science Foundation of China (20060400532, 2006DS08018)
文摘In order to study the effects of soil compaction, and soil physical and chemicalcharacteristics after land reclamation, selected lands that were reclaimed after 1, 2, 3, 4,and 5 a, respectively, in the Majiata Mine of the Shendong Open Pit; tested the effects ofsoil compaction; and collected soil samples from 5 different depths, which are 0-7.62,7.62-15.24, 15.24-22.86, 22.86-30.48, and 30.48-38.10 cm, respectively. The resultsshow that: Land reclamation leads to soil compaction. The lowest effect of soil compaction is in the top layer and the highest one at the depth of 20-30 cm; The bulk density of reclaimed soil is higher than that of undisturbed soil; this declines with the reclamation and nearly reaches the level of undisturbed soil after 5-year reclamation;The content of reclaimed soil nutrients is lower than that of undisturbed soil. The lowest one is inthe soil dumping site, which reaches the level of undisturbed soil after 5-year reclamation;The pH value of reclaimed soil is lower than that of undisturbed soil. The highest one isin the soil dumping site; this declines with the reclamation.
基金funding support provided by the Laurentian University Research Fund for the compilation of this report
文摘Near-surface deposits that extend to considerable depths are often amenable to both open pit mining and/or underground mining. This paper investigates the strategy of mining options for an orebody using a Mixed Integer Linear Programming(MILP) optimization framework. The MILP formulation maximizes the Net Present Value(NPV) of the reserve when extracted with(i) open pit mining,(ii) underground mining, and(iii) concurrent open pit and underground mining. Comparatively, implementing open pit mining generates a higher NPV than underground mining. However considering the investment required for these mining options, underground mining generates a better return on investment than open pit mining. Also, in the concurrent open pit and underground mining scenario, the optimizer prefers extracting blocks using open pit mining. Although the underground mine could access ore sooner, the mining cost differential for open pit mining is more than compensated for by the discounting benefits associated with earlier underground mining.
文摘Pit optimisation is the earliest and most established application of its kind in the minerals industry, but this has been primarily driven by metal, not coal. Coal has the same financial drivers for resource optimisation as does the metalliferous industry, yet pit optimisation is not common practice. Why? The following discussion presents the basics of pit optimisation as they relate to coal and illustrates how a technology developed for massive deposits is not suitable for thin, multi-seam deposits where mine planning is often driven more by product quality than by value drivers such as Net Present Value. An alternative methodology is presented that takes advantage of the data structure of bedded deposits to optimise resource recovery in terms of a production schedule that meets constraints on coal quality.
文摘Drilling and blasting play vital roles in opencast mining. These operations not only affect the cost of production directly but as well and significantly, the overall operational costs. This research was carried out to find a possible way of optimizing the drilling and blasting operations in an open pit mine of Somair (Société des Mines de l’Air), in the Niger Republic. In order to optimize the drilling operation, the time taken by two drilling machines to accomplish the same task was analyzed statistically. The result indicates that the Down the Hole Hammer Drilling Rig (DMNo406) is more efficient than the Drill Master (DM405). The relative unit consumption of two explosives (Explus and Nitram 9), when used under the same operating conditions, were also considered and the results indicate Explus to be more economical per unit consumption with a range of 0.15 g/t–0.183 g/t, when compared with Nitram 9 with a unit consumption range of 0.19 g/t-0.24 g/t in the study area.
基金the key project of the National Natural Science Foundation of China (No. 51034005)the Research Fund for the Doctoral Program of Higher Education of China(No.20100095110019)+1 种基金the National‘‘Twelfth Five-Year’’Plan for Science and Technology Support of China(No.2014BAC14B00)the National High Technology Research and Development Program of China(No.2012AA062004)
文摘Leaving ditches between adjacent mining areas can effectively reduce re-stripping in the latter mining area and simultaneously lead to an increment in internal dumping costs in the former mining area. This paper establishes calculation models for these two marginal costs. The optimizing model for slope cover height can be determined by including marginal cost models in the objective function. The paper has two main contributions:(a) it fully considers redistribution of dumping space in the model;(b) it introduces price fluctuations and cash discounts in the model. We use the typical open-pit mine as an example to test and prove the model. We conclude that a completely covered slope is reasonable in Haerwusu open pit mine; in addition to an increasing price index, the slope cover height can be reduced; and that price changes are one of the most important influencing factors of slope cover height optimization in an open-pit mine.
文摘Energy sector represents a key industrial branch for national, environmental and economic success. With its exclusive access to domestic deposits, lignite industry represents a guarantor of reliable raw materials, offering long-term supply security based on verified reserves. Currently operated coalmines in Serbia (Kolubara and Kostolac) have production around 36 million tons of lignite, and over 108 million m3 of overburden. Consequently, sustainability of lignite production requires cost reduction and environmental protection, as well as capacity increase. In order to rationalise, and increase efficiency of Serbian lignite mines, it is necessary to focus the activities on major issues shown within the triangle of energy policy objectives (security of supply, competi- tive prices and environmental protection). Production process optimisation singled out several special programs. Equipment revi- talization and modernization is necessary taking into account that majority of the currently operated machinery has a life up to 25 years. Production process automation would enable high level of technical operation in the field of open cast mines management. Lack of coal quality uniformity is the permanent problem resulting by great amounts of coal reserves to be used uneconomically. Planning and training at all levels and finally cooperative software for business procedures and work order management. The measures suggested are a key precondition for maintaining competitive position of lignite production on international level.