The failure characteristic of talus-derived rock mass continues to challenge quantitative hazard assessments in open-pit mining. Physical model test was used to assess the failure modes and mechanisms on talus-derived...The failure characteristic of talus-derived rock mass continues to challenge quantitative hazard assessments in open-pit mining. Physical model test was used to assess the failure modes and mechanisms on talus-derived rock mass. The different types of failure modes of the talus-derived rock mass were introduced and a possible failure mechanism relation between the failure zone and the structure of the talus-derived rock mass was also shown. The physical model test results indicate that the rainfall has significant influence on the stability and failure modes of talus-derived rock mass during open-pit mining. The development of the seepage area caused by rainfall initiates the localized failure in that particular area, and the initiation of localized instability is mainly induced by stress changes concentrated in the seepage area.展开更多
At the end of the open-pit mining process in large metal mines, the mining model must change from open-pit mining to underground mining, but the mutual interference between the two mining models leads to poor producti...At the end of the open-pit mining process in large metal mines, the mining model must change from open-pit mining to underground mining, but the mutual interference between the two mining models leads to poor production safety conditions and difficulties in production convergence during the transition period. To solve these technical problems of poor production safety conditions and difficulties in production convergence during the transition period, in this study, based on the case of the Dagu Mountain Mine, a new transition mode of wedge switching for collaborative mining is proposed and established, which is suitable for collaborative mining. This new mining process completely eliminates the boundary pillar and the artificial covering layer, combining the technology of the mining-induced caving method and the technology of deep mining at the bottom of the open-pit. The results show that 1) the optimization of the open-pit boundary reduces the amount of rock stripping, and 2) it achieves a stable transition of collaborative mining capacity. The study shows that the proposed method uses the technologies of the mining-induced caving method in underground mining and deep mining at the bottom of the open pit in open-pit mining, and the method then optimizes the open-pit mining in detail by comparing the advantages of open-pit mining and underground mining. This study provides true and accurate technical support for the transition from open-pit mining to underground mining.展开更多
基金Project (41202220) supported by the National Natural Science Foundation of ChinaProject (2-9-2012-65) supported by the Fundamental Research Funds for the Central Universities, ChinaProject (20120022120003) supported by the Ph.D Program Foundation of Ministry of Education of China
文摘The failure characteristic of talus-derived rock mass continues to challenge quantitative hazard assessments in open-pit mining. Physical model test was used to assess the failure modes and mechanisms on talus-derived rock mass. The different types of failure modes of the talus-derived rock mass were introduced and a possible failure mechanism relation between the failure zone and the structure of the talus-derived rock mass was also shown. The physical model test results indicate that the rainfall has significant influence on the stability and failure modes of talus-derived rock mass during open-pit mining. The development of the seepage area caused by rainfall initiates the localized failure in that particular area, and the initiation of localized instability is mainly induced by stress changes concentrated in the seepage area.
基金Projects(41371437,61473072,61203214)supported by the National Natural Science Foundation of ChinaProjet(N160404008)supported by the Fundamental Research Funds for the Central Universities,China
文摘At the end of the open-pit mining process in large metal mines, the mining model must change from open-pit mining to underground mining, but the mutual interference between the two mining models leads to poor production safety conditions and difficulties in production convergence during the transition period. To solve these technical problems of poor production safety conditions and difficulties in production convergence during the transition period, in this study, based on the case of the Dagu Mountain Mine, a new transition mode of wedge switching for collaborative mining is proposed and established, which is suitable for collaborative mining. This new mining process completely eliminates the boundary pillar and the artificial covering layer, combining the technology of the mining-induced caving method and the technology of deep mining at the bottom of the open-pit. The results show that 1) the optimization of the open-pit boundary reduces the amount of rock stripping, and 2) it achieves a stable transition of collaborative mining capacity. The study shows that the proposed method uses the technologies of the mining-induced caving method in underground mining and deep mining at the bottom of the open pit in open-pit mining, and the method then optimizes the open-pit mining in detail by comparing the advantages of open-pit mining and underground mining. This study provides true and accurate technical support for the transition from open-pit mining to underground mining.