The active layer,acting as an intermediary of water and heat exchange between permafrost and atmosphere,greatly influences biogeochemical cycles in permafrost areas and is notably sensitive to climate fluctuations.Uti...The active layer,acting as an intermediary of water and heat exchange between permafrost and atmosphere,greatly influences biogeochemical cycles in permafrost areas and is notably sensitive to climate fluctuations.Utilizing the Chinese Meteorological Forcing Dataset to drive the Community Land Model,version 5.0,this study simulates the spatial and temporal characteristics of active layer thickness(ALT)on the Tibetan Plateau(TP)from 1980 to 2020.Results show that the ALT,primarily observed in the central and western parts of the TP where there are insufficient station observations,exhibits significant interdecadal changes after 2000.The average thickness on the TP decreases from 2.54 m during 1980–1999 to 2.28 m during 2000–2020.This change is mainly observed in the western permafrost region,displaying a sharp regional inconsistency compared to the eastern region.A persistent increasing trend of ALT is found in the eastern permafrost region,rather than an interdecadal change.The aforementioned changes in ALT are closely tied to the variations in the surrounding atmospheric environment,particularly air temperature.Additionally,the area of the active layer on the TP displays a profound interdecadal change around 2000,arising from the permafrost thawing and forming.It consistently decreases before 2000 but barely changes after 2000.The regional variation in the permafrost active layer over the TP revealed in this study indicates a complex response of the contemporary climate under global warming.展开更多
Precipitation projections over the Tibetan Plateau(TP)show diversity among existing studies,partly due to model uncertainty.How to develop a reliable projection remains inconclusive.Here,based on the IPCC AR6–assesse...Precipitation projections over the Tibetan Plateau(TP)show diversity among existing studies,partly due to model uncertainty.How to develop a reliable projection remains inconclusive.Here,based on the IPCC AR6–assessed likely range of equilibrium climate sensitivity(ECS)and the climatological precipitation performance,the authors constrain the CMIP6(phase 6 of the Coupled Model Intercomparison Project)model projection of summer precipitation and water availability over the TP.The best estimates of precipitation changes are 0.24,0.25,and 0.45 mm d^(−1)(5.9%,6.1%,and 11.2%)under the Shared Socioeconomic Pathway(SSP)scenarios of SSP1–2.6,SSP2–4.5,and SSP5–8.5 from 2050–2099 relative to 1965–2014,respectively.The corresponding constrained projections of water availability measured by precipitation minus evaporation(P–E)are 0.10,0.09,and 0.22 mm d^(−1)(5.7%,4.9%,and 13.2%),respectively.The increase of precipitation and P–E projected by the high-ECS models,whose ECS values are higher than the upper limit of the likely range,are about 1.7 times larger than those estimated by constrained projections.Spatially,there is a larger increase in precipitation and P–E over the eastern TP,while the western part shows a relatively weak difference in precipitation and a drier trend in P–E.The wetter TP projected by the high-ECS models resulted from both an approximately 1.2–1.4 times stronger hydrological sensitivity and additional warming of 0.6℃–1.2℃ under all three scenarios during 2050–2099.This study emphasizes that selecting climate models with climate sensitivity within the likely range is crucial to reducing the uncertainty in the projection of TP precipitation and water availability changes.展开更多
The Tibetan Plateau(TP)is a prevalent region for convection systems due to its unique thermodynamic forcing.This study investigated isolated deep convections(IDCs),which have a smaller spatial and temporal size than m...The Tibetan Plateau(TP)is a prevalent region for convection systems due to its unique thermodynamic forcing.This study investigated isolated deep convections(IDCs),which have a smaller spatial and temporal size than mesoscale convective systems(MCSs),over the TP in the rainy season(June-September)during 2001–2020.The authors used satellite precipitation and brightness temperature observations from the Global Precipitation Measurement mission.Results show that IDCs mainly concentrate over the southern TP.The IDC number per rainy season decreases from around 140 over the southern TP to around 10 over the northern TP,with an average 54.2.The initiation time of IDCs exhibits an obvious diurnal cycle,with the peak at 1400–1500 LST and the valley at 0900–1000 LST.Most IDCs last less than five hours and more than half appear for only one hour.IDCs generally have a cold cloud area of 7422.9 km^(2),containing a precipitation area of approximately 65%.The larger the IDC,the larger the fraction of intense precipitation it contains.IDCs contribute approximately 20%–30%to total precipitation and approximately 30%–40%to extreme precipitation over the TP,with a larger percentage in July and August than in June and September.In terms of spatial distribution,IDCs contribute more to both total precipitation and extreme precipitation over the TP compared to the surrounding plain regions.IDCs over the TP account for a larger fraction than MCSs,indicating the important role of IDCs over the region.展开更多
Extreme snowfall events over the Tibetan Plateau(TP)cause considerable damage to local society and natural ecosystems.In this study,the authors investigate the projected changes in such events over the TP and its surr...Extreme snowfall events over the Tibetan Plateau(TP)cause considerable damage to local society and natural ecosystems.In this study,the authors investigate the projected changes in such events over the TP and its surrounding areas based on an ensemble of a set of 21st century climate change projections using a regional climate model,RegCM4.The model is driven by five CMIP5 global climate models at a grid spacing of 25 km,under the RCP4.5 and RCP8.5 pathways.Four modified ETCCDI extreme indices-namely,SNOWTOT,S1mm,S10mm,and Sx5day-are employed to characterize the extreme snowfall events.RegCM4 generally reproduces the spatial distribution of the indices over the region,although with a tendency of overestimation.For the projected changes,a general decrease in SNOWTOT is found over most of the TP,with greater magnitude and better cross-simulation agreement over the eastern part.All the simulations project an overall decrease in S1mm,ranging from a 25%decrease in the west and to a 50%decrease in the east of the TP.Both S10mm and Sx5day are projected to decrease over the eastern part and increase over the central and western parts of the TP.Notably,S10mm shows a marked increase(more than double)with high cross-simulation agreement over the central TP.Significant increases in all four indices are found over the Tarim and Qaidam basins,and northwestern China north of the TP.The projected changes show topographic dependence over the TP in the latitudinal direction,and tend to decrease/increase in low-/high-altitude areas.展开更多
The preparation of a synthetic pitch from aromatic monomers could easily regulate structure orientation at the molecu-lar level,which would be useful in fabrication.An isotropic synthetic pitch was prepared by a chlor...The preparation of a synthetic pitch from aromatic monomers could easily regulate structure orientation at the molecu-lar level,which would be useful in fabrication.An isotropic synthetic pitch was prepared by a chlorine-and/or nitrogen-induced sub-stitution polymerization reaction method using aromatic hydrocarbon precursors containing Cl and N,which for this study were chloromethyl naphthalene and quinoline.This method was verified by investigating the structural changes under different synthesis conditions,and the synthesis mechanism induced by aromatics containing Cl was also probed.The result shows that the pyridinic N in quinoline contains a lone pair of electrons,and is an effective active site to induce the polymerization reaction by coupling with aromatic hydrocarbons containing Cl.The reaction between such free radicals causes strong homopolymerization and oligomeriza-tion.A higher reaction temperature and longer reaction time significantly increased the degree of polymerization and thus increased the softening point of the pitch.A linear molecular structure was formed by the Cl substitution reaction,which produced a highly spinnable pitch with a softening point of 258.6℃,and carbon fibers with a tensile strength of 1163.82 MPa were obtained.This study provides a relatively simple and safe method for the preparation of high-quality spinnable pitch.展开更多
This work investigated the effect of process parameters on densification,microstructure,and mechanical properties of a nickel-aluminum-bronze(NAB)alloy fabricated by laser powder bed fusion(LPBF)additive manufacturing...This work investigated the effect of process parameters on densification,microstructure,and mechanical properties of a nickel-aluminum-bronze(NAB)alloy fabricated by laser powder bed fusion(LPBF)additive manufacturing.The LPBF-printed NAB alloy samples with relative densities of over 98.5%were obtained under the volumetric energy density range of 200−250 J/mm^(3).The microstructure of the NAB alloy printed in both horizontal and vertical planes primarily consisted ofβ'martensitic phase and bandedαphase.In particular,a coarser-columnar grain structure and stronger crystallographic texture were achieved in the vertical plane,where the maximum texture intensity was 30.56 times greater than that of random textures at the(100)plane.Increasing the volumetric energy density resulted in a decrease in the columnar grain size,while increasing the amount ofαphase.Notably,β_(1)'martensitic structures with nanotwins and nanoscaleκ-phase precipitates were identified in the microstructure of LPBF-printed NAB samples with a volumetric energy density of 250 J/mm^(3).Furthermore,under optimal process parameters with a laser power of 350 W and scanning speed of 800 mm/s,significant improvements were observed in the microhardness(HV 386)and ultimate tensile strength(671 MPa),which was attributed to an increase in refined acicular martensite.展开更多
Graphitized carbon foams(GFms)were prepared using mesophase pitch(MP)as a raw material by foaming(450℃),pre-oxidation(320℃),carbonization(1000℃)and graphitization(2800℃).The differences in structure and properties...Graphitized carbon foams(GFms)were prepared using mesophase pitch(MP)as a raw material by foaming(450℃),pre-oxidation(320℃),carbonization(1000℃)and graphitization(2800℃).The differences in structure and properties of GFms prepared from different MP precursors pretreated by ball milling or liquid phase extraction were investigated and compared,and semi-quantitative calculations were conducted on the Raman and FTIR spectra of samples at each preparation stage.Semi-quantitat-ive spectroscopic analysis provided detailed information on the structure and chemical composition changes of the MP and GFm de-rived from it.Combined with microscopic observations,the change from precursor to GFm was analyzed.The results showed that ball milling concentrated the distribution of aromatic molecules in the pitch,which contributed to uniform foaming to give a GFm with a uniform pore distribution and good properties.Liquid phase extraction helped remove light components while retaining large aromatics to form graphitic planes with the largest average size during post-treatment to produce a GFm with the highest degree of graphitization and the fewest open pores,giving the best compression resistance(2.47 MPa),the highest thermal conductivity(64.47 W/(m·K))and the lowest electrical resistance(13.02μΩ·m).Characterization combining semi-quantitative spectroscopic ana-lysis with microscopic observations allowed us to control the preparation of the MP-derived GFms.展开更多
Background,aim,and scope The tectonic uplift of the Cenozoic Tibetan Plateau has produced a chain effect,which is an excellent location for Earth system science research,and its uplift process,mechanism and environmen...Background,aim,and scope The tectonic uplift of the Cenozoic Tibetan Plateau has produced a chain effect,which is an excellent location for Earth system science research,and its uplift process,mechanism and environmental effects are the hot spot and frontier of the current research.The“Tibetan Plateau uplift-weathering-CO_(2) concentration-global climate change”model was put forward by Raymo and Ruddiman to interpret the Late Cenozoic climate change.However,there are still some questions suspended,such as does the weathering of the Tibetan Plateau have the ability to control the global climate?How to explain the modern-like global CO_(2) concentration starting at about 24 Ma?Here,a short space was taken to present a brainstorm about the above questions on account of existing geological pieces of evidence.Materials and methods In this paper,we integrate the formation and evolution of the Yangtze River and Pearl River,the origin and development of the Asian inland aridification-monsoon system,the Cenozoic tectonic uplift process of the Tibetan Plateau,and the westerly winds to discuss and analyze the relationship between the Cenozoic CO_(2) concentration changes and the uplift of the Tibetan Plateau and why the CO_(2) concentration similar to the present was formed at about 24 Ma.Results Similar correspondence of the surface uplift history of Xizang,other global mountains,and the declining CO_(2) concentration could support the theory Tibetan Plateau weathering inf luences CO_(2) concentration.Starting from 24 Ma,the most important character was the uplift and erosion of Xizang and Himalaya,collaborating with Ocean Iron Fertilization(OIF)together as an entity to control the atmospheric CO_(2) concentration because the great Asian rivers,Asian monsoons,and westerlies connected Xizang and surrounded seas together through materials transportation.Discussion Paleogeographic reconstructions from 40 Ma to 20 Ma illustrate that the main topographic change occurred in the Andes,Cordillera orogenic belt,and Xizang.We comprise a comprehensive set of evidence from independent data,which correspond temporally with the tipping point(about 24 Ma)of the atmospheric CO_(2) and we noticed that modern-like Asia monsoon,inland aridity,Asian great rivers,and climate zone formed at about 24 Ma and also there are tectonic activities for the Andes and Rockies.We raised the possibility that the modern-like atmospheric CO_(2) concentration at about 24 Ma was caused by the above geological factors.Here the rivers,monsoon,and westerlies are termed as“connectors”.In addition,these Asian rivers originated from Xizang,the monsoon,and inner Asian aridification are strongly a function of the uplift and growth of Xizang,thus,Xizang here is named as“trigger”.The distinct character of“trigger-connectors”model is that this not only takes the monsoon,westerlies,and the global great rivers into consideration but also expands the range which inf luences atmospheric CO_(2) concentration,from local points to a vast area since about 24 Ma,such as from Tibetan Plateau to Asia,including surrounded seas,after about 24 Ma.However,because the opening of the Late Oligocene-Early Miocene Antarctic periphery straits is highly coincident with the onset of modern-like global atmospheric CO_(2) concentration,we are forced to consider that they also had a significant impact on the reduction of atmospheric CO_(2) concentrations at this time.Conclusions“Trigger-connectors”was put forward to explain the Cenozoic CO_(2) variation,especially modern-like global CO_(2) concentration since about 24 Ma.Recommendations and perspectives Here we use the“trigger-connectors”model to explain the formation of modern-like CO_(2) concentrations starting at about 24 Ma,but there are still some problems.The most important premise for the“trigger-connectors”model is the constructed Cenozoic CO_(2) concentration record is reliable,which is the foundation of our hypothesis.In the future,potential improvements should focus on topographic reconstructions of Xizang and the global mountains.Here we have concentrated on Xizang in the considered timeslices but still,pay less attention to other global orogenic belts.Collaborations with geologist experts in those regions could provide valuable feedback to evaluate their potential role of them in CO_(2) evolution.What is more,considerable progress may be achieved with the addition and consideration of more and new geological data.展开更多
This study examined the mechanisms for improving the adhesion performance of the asphalt-aggregate interface with two anti-stripping agents and two coupling agents.The investigation of contact behavior between various...This study examined the mechanisms for improving the adhesion performance of the asphalt-aggregate interface with two anti-stripping agents and two coupling agents.The investigation of contact behavior between various asphalt-aggregate surfaces was conducted using molecular dynamics(MD)simulations.The interaction energy and the relative concentration distribution were employed as the parameters to analyze the enhancement mechanisms of anti-stripping agents and coupling agents on the asphalt-aggregate interface.Results indicated that the adhesion at the asphalt-aggregate interface could be strengthened by both anti-stripping agents and coupling agents.Anti-stripping agents primarily improve adhesion through the reinforcement of electrostatic attraction,while coupling agents primarily upgrade adhesion by strengthening the van der Waals.Hence,the molecular dynamics modeling and calculation techniques presented in this study can be utilized to elucidate the development mechanism of the asphalt-aggregate interface through the use of anti-stripping agents and coupling agents.展开更多
Because of its high purity and excellent orientation, mesophase pitch is a superior precursor for high-performance car-bon materials. However, the preparation of top-notch mesophase pitch faces challenges. Catalytic p...Because of its high purity and excellent orientation, mesophase pitch is a superior precursor for high-performance car-bon materials. However, the preparation of top-notch mesophase pitch faces challenges. Catalytic polycondensation at low temperat-ures is more favorable for synthesizing mesophase pitch, because it circumvents the high-temperature free radical reaction of other thermal polycondensation approaches. The reaction is gentle and can be easily controlled. It has the potential to significantly im-prove the yield of mesophase pitch and easily introduce naphthenic characteristics into the molecules, catalytic polycondensation is therefore a preferred method of synthesizing highly spinnable mesophase pitch. This review provides a synopsis of the selective pre-treatment of the raw materials to prepare different mesophase pitches, and explains the reaction mechanism and associated research advances for different catalytic systems in recent years. Finally, how to manufacture high-quality mesophase pitch by using a cata-lyst-promoter system is summarized and proposed, which may provide a theoretical basis for the future design of high-quality pitch molecules.展开更多
Objective To evaluate the clinical efficacy and safety of Zhenzhu Qingyuan Granules through a clinical randomized controlled trial and to analyze the potential action targets and pathways of this formula using network...Objective To evaluate the clinical efficacy and safety of Zhenzhu Qingyuan Granules through a clinical randomized controlled trial and to analyze the potential action targets and pathways of this formula using network pharmacology.Methods Patients with gastroesophageal reflux disease(GERD)of liver–stomach stagnant heat pattern who met the inclusion and exclusion criteria were randomly divided into the control group and the observation group.The control group received oral rabeprazole,whereas the observation group were given Zhenzhu Qingyuan Granules in addition to the rabeprazole.The treatment duration was 8 weeks.Clinical efficacy was observed in both groups after 8 weeks.Network pharmacology was used to analyze the action targets of ZhenzhuQingyuanGranules and the genes related to GERD,and core targets were inferred.Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were conducted to explore the potential mechanisms of this formula.Results The clinical research results showed that the total effective rate in the treatment group was 92.68%,compared with 70.00%in the control group,with a statistically significant difference(p<0.05).After treatment,both Chinese medicine syndrome score and endoscopic score improved in both groups compared with before treatment(p<0.05),and the treatment group showed greater improvement than the control group(p<0.05).Network pharmacology identified effective components of Zhenzhu Qingyuan Granules for treating GERD,including quercetin,luteolin,andβ-sitosterol,with potential action targets such as tumor protein 53(TP53),protein kinase B(AKT1),and tumor necrosis factor.Conclusion Zhenzhu Qingyuan Granules can significantly improve clinical symptoms in patients with GERD of liver–stomach stagnated heat pattern,enhance clinical efficacy,and have high safety.This formula may exert therapeutic effects through multiple targets and pathways.展开更多
基金supported by the Second Tibetan Plateau Scientific Expedition and Research(STEP)program[grant number 2019QZKK0102]the Youth Innovation Promotion Association CAS[grant number 2021073]the special fund of the Yunnan University“double firstclass”construction.
文摘The active layer,acting as an intermediary of water and heat exchange between permafrost and atmosphere,greatly influences biogeochemical cycles in permafrost areas and is notably sensitive to climate fluctuations.Utilizing the Chinese Meteorological Forcing Dataset to drive the Community Land Model,version 5.0,this study simulates the spatial and temporal characteristics of active layer thickness(ALT)on the Tibetan Plateau(TP)from 1980 to 2020.Results show that the ALT,primarily observed in the central and western parts of the TP where there are insufficient station observations,exhibits significant interdecadal changes after 2000.The average thickness on the TP decreases from 2.54 m during 1980–1999 to 2.28 m during 2000–2020.This change is mainly observed in the western permafrost region,displaying a sharp regional inconsistency compared to the eastern region.A persistent increasing trend of ALT is found in the eastern permafrost region,rather than an interdecadal change.The aforementioned changes in ALT are closely tied to the variations in the surrounding atmospheric environment,particularly air temperature.Additionally,the area of the active layer on the TP displays a profound interdecadal change around 2000,arising from the permafrost thawing and forming.It consistently decreases before 2000 but barely changes after 2000.The regional variation in the permafrost active layer over the TP revealed in this study indicates a complex response of the contemporary climate under global warming.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research(STEP)program[grant number 2019QZKK0102]the Chinese Academy of Sciences[grant number 060GJHZ2023079GC].
文摘Precipitation projections over the Tibetan Plateau(TP)show diversity among existing studies,partly due to model uncertainty.How to develop a reliable projection remains inconclusive.Here,based on the IPCC AR6–assessed likely range of equilibrium climate sensitivity(ECS)and the climatological precipitation performance,the authors constrain the CMIP6(phase 6 of the Coupled Model Intercomparison Project)model projection of summer precipitation and water availability over the TP.The best estimates of precipitation changes are 0.24,0.25,and 0.45 mm d^(−1)(5.9%,6.1%,and 11.2%)under the Shared Socioeconomic Pathway(SSP)scenarios of SSP1–2.6,SSP2–4.5,and SSP5–8.5 from 2050–2099 relative to 1965–2014,respectively.The corresponding constrained projections of water availability measured by precipitation minus evaporation(P–E)are 0.10,0.09,and 0.22 mm d^(−1)(5.7%,4.9%,and 13.2%),respectively.The increase of precipitation and P–E projected by the high-ECS models,whose ECS values are higher than the upper limit of the likely range,are about 1.7 times larger than those estimated by constrained projections.Spatially,there is a larger increase in precipitation and P–E over the eastern TP,while the western part shows a relatively weak difference in precipitation and a drier trend in P–E.The wetter TP projected by the high-ECS models resulted from both an approximately 1.2–1.4 times stronger hydrological sensitivity and additional warming of 0.6℃–1.2℃ under all three scenarios during 2050–2099.This study emphasizes that selecting climate models with climate sensitivity within the likely range is crucial to reducing the uncertainty in the projection of TP precipitation and water availability changes.
基金supported by the National Natural Science Foundation of China[grant number 42105064]the Second Tibetan Plateau Scientific Expedition and Research(STEP)program[grant number 2019QZKK0102]the special fund of the Yunnan University“double first-class”construction.
文摘The Tibetan Plateau(TP)is a prevalent region for convection systems due to its unique thermodynamic forcing.This study investigated isolated deep convections(IDCs),which have a smaller spatial and temporal size than mesoscale convective systems(MCSs),over the TP in the rainy season(June-September)during 2001–2020.The authors used satellite precipitation and brightness temperature observations from the Global Precipitation Measurement mission.Results show that IDCs mainly concentrate over the southern TP.The IDC number per rainy season decreases from around 140 over the southern TP to around 10 over the northern TP,with an average 54.2.The initiation time of IDCs exhibits an obvious diurnal cycle,with the peak at 1400–1500 LST and the valley at 0900–1000 LST.Most IDCs last less than five hours and more than half appear for only one hour.IDCs generally have a cold cloud area of 7422.9 km^(2),containing a precipitation area of approximately 65%.The larger the IDC,the larger the fraction of intense precipitation it contains.IDCs contribute approximately 20%–30%to total precipitation and approximately 30%–40%to extreme precipitation over the TP,with a larger percentage in July and August than in June and September.In terms of spatial distribution,IDCs contribute more to both total precipitation and extreme precipitation over the TP compared to the surrounding plain regions.IDCs over the TP account for a larger fraction than MCSs,indicating the important role of IDCs over the region.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences[grant number XDA2006040102]the National Natural Science Foundation of China[grant number 42175037].
文摘Extreme snowfall events over the Tibetan Plateau(TP)cause considerable damage to local society and natural ecosystems.In this study,the authors investigate the projected changes in such events over the TP and its surrounding areas based on an ensemble of a set of 21st century climate change projections using a regional climate model,RegCM4.The model is driven by five CMIP5 global climate models at a grid spacing of 25 km,under the RCP4.5 and RCP8.5 pathways.Four modified ETCCDI extreme indices-namely,SNOWTOT,S1mm,S10mm,and Sx5day-are employed to characterize the extreme snowfall events.RegCM4 generally reproduces the spatial distribution of the indices over the region,although with a tendency of overestimation.For the projected changes,a general decrease in SNOWTOT is found over most of the TP,with greater magnitude and better cross-simulation agreement over the eastern part.All the simulations project an overall decrease in S1mm,ranging from a 25%decrease in the west and to a 50%decrease in the east of the TP.Both S10mm and Sx5day are projected to decrease over the eastern part and increase over the central and western parts of the TP.Notably,S10mm shows a marked increase(more than double)with high cross-simulation agreement over the central TP.Significant increases in all four indices are found over the Tarim and Qaidam basins,and northwestern China north of the TP.The projected changes show topographic dependence over the TP in the latitudinal direction,and tend to decrease/increase in low-/high-altitude areas.
文摘The preparation of a synthetic pitch from aromatic monomers could easily regulate structure orientation at the molecu-lar level,which would be useful in fabrication.An isotropic synthetic pitch was prepared by a chlorine-and/or nitrogen-induced sub-stitution polymerization reaction method using aromatic hydrocarbon precursors containing Cl and N,which for this study were chloromethyl naphthalene and quinoline.This method was verified by investigating the structural changes under different synthesis conditions,and the synthesis mechanism induced by aromatics containing Cl was also probed.The result shows that the pyridinic N in quinoline contains a lone pair of electrons,and is an effective active site to induce the polymerization reaction by coupling with aromatic hydrocarbons containing Cl.The reaction between such free radicals causes strong homopolymerization and oligomeriza-tion.A higher reaction temperature and longer reaction time significantly increased the degree of polymerization and thus increased the softening point of the pitch.A linear molecular structure was formed by the Cl substitution reaction,which produced a highly spinnable pitch with a softening point of 258.6℃,and carbon fibers with a tensile strength of 1163.82 MPa were obtained.This study provides a relatively simple and safe method for the preparation of high-quality spinnable pitch.
基金Project(2022A1515010304)supported by the Guangdong Basic and Applied Basic Research Foundation,ChinaProject(52305358)supported by the National Natural Science Foundation of China+2 种基金Project(2023QNRC001)supported by the Young Elite Scientists Sponsorship Program by China Association for Science and TechnologyProject(QT-2023-001)supported by the Young Talent Support Project of Guangzhou,ChinaProject(2023ZYGXZR061)supported by the Fundamental Research Funds for the Central Universities,China。
文摘This work investigated the effect of process parameters on densification,microstructure,and mechanical properties of a nickel-aluminum-bronze(NAB)alloy fabricated by laser powder bed fusion(LPBF)additive manufacturing.The LPBF-printed NAB alloy samples with relative densities of over 98.5%were obtained under the volumetric energy density range of 200−250 J/mm^(3).The microstructure of the NAB alloy printed in both horizontal and vertical planes primarily consisted ofβ'martensitic phase and bandedαphase.In particular,a coarser-columnar grain structure and stronger crystallographic texture were achieved in the vertical plane,where the maximum texture intensity was 30.56 times greater than that of random textures at the(100)plane.Increasing the volumetric energy density resulted in a decrease in the columnar grain size,while increasing the amount ofαphase.Notably,β_(1)'martensitic structures with nanotwins and nanoscaleκ-phase precipitates were identified in the microstructure of LPBF-printed NAB samples with a volumetric energy density of 250 J/mm^(3).Furthermore,under optimal process parameters with a laser power of 350 W and scanning speed of 800 mm/s,significant improvements were observed in the microhardness(HV 386)and ultimate tensile strength(671 MPa),which was attributed to an increase in refined acicular martensite.
文摘Graphitized carbon foams(GFms)were prepared using mesophase pitch(MP)as a raw material by foaming(450℃),pre-oxidation(320℃),carbonization(1000℃)and graphitization(2800℃).The differences in structure and properties of GFms prepared from different MP precursors pretreated by ball milling or liquid phase extraction were investigated and compared,and semi-quantitative calculations were conducted on the Raman and FTIR spectra of samples at each preparation stage.Semi-quantitat-ive spectroscopic analysis provided detailed information on the structure and chemical composition changes of the MP and GFm de-rived from it.Combined with microscopic observations,the change from precursor to GFm was analyzed.The results showed that ball milling concentrated the distribution of aromatic molecules in the pitch,which contributed to uniform foaming to give a GFm with a uniform pore distribution and good properties.Liquid phase extraction helped remove light components while retaining large aromatics to form graphitic planes with the largest average size during post-treatment to produce a GFm with the highest degree of graphitization and the fewest open pores,giving the best compression resistance(2.47 MPa),the highest thermal conductivity(64.47 W/(m·K))and the lowest electrical resistance(13.02μΩ·m).Characterization combining semi-quantitative spectroscopic ana-lysis with microscopic observations allowed us to control the preparation of the MP-derived GFms.
文摘Background,aim,and scope The tectonic uplift of the Cenozoic Tibetan Plateau has produced a chain effect,which is an excellent location for Earth system science research,and its uplift process,mechanism and environmental effects are the hot spot and frontier of the current research.The“Tibetan Plateau uplift-weathering-CO_(2) concentration-global climate change”model was put forward by Raymo and Ruddiman to interpret the Late Cenozoic climate change.However,there are still some questions suspended,such as does the weathering of the Tibetan Plateau have the ability to control the global climate?How to explain the modern-like global CO_(2) concentration starting at about 24 Ma?Here,a short space was taken to present a brainstorm about the above questions on account of existing geological pieces of evidence.Materials and methods In this paper,we integrate the formation and evolution of the Yangtze River and Pearl River,the origin and development of the Asian inland aridification-monsoon system,the Cenozoic tectonic uplift process of the Tibetan Plateau,and the westerly winds to discuss and analyze the relationship between the Cenozoic CO_(2) concentration changes and the uplift of the Tibetan Plateau and why the CO_(2) concentration similar to the present was formed at about 24 Ma.Results Similar correspondence of the surface uplift history of Xizang,other global mountains,and the declining CO_(2) concentration could support the theory Tibetan Plateau weathering inf luences CO_(2) concentration.Starting from 24 Ma,the most important character was the uplift and erosion of Xizang and Himalaya,collaborating with Ocean Iron Fertilization(OIF)together as an entity to control the atmospheric CO_(2) concentration because the great Asian rivers,Asian monsoons,and westerlies connected Xizang and surrounded seas together through materials transportation.Discussion Paleogeographic reconstructions from 40 Ma to 20 Ma illustrate that the main topographic change occurred in the Andes,Cordillera orogenic belt,and Xizang.We comprise a comprehensive set of evidence from independent data,which correspond temporally with the tipping point(about 24 Ma)of the atmospheric CO_(2) and we noticed that modern-like Asia monsoon,inland aridity,Asian great rivers,and climate zone formed at about 24 Ma and also there are tectonic activities for the Andes and Rockies.We raised the possibility that the modern-like atmospheric CO_(2) concentration at about 24 Ma was caused by the above geological factors.Here the rivers,monsoon,and westerlies are termed as“connectors”.In addition,these Asian rivers originated from Xizang,the monsoon,and inner Asian aridification are strongly a function of the uplift and growth of Xizang,thus,Xizang here is named as“trigger”.The distinct character of“trigger-connectors”model is that this not only takes the monsoon,westerlies,and the global great rivers into consideration but also expands the range which inf luences atmospheric CO_(2) concentration,from local points to a vast area since about 24 Ma,such as from Tibetan Plateau to Asia,including surrounded seas,after about 24 Ma.However,because the opening of the Late Oligocene-Early Miocene Antarctic periphery straits is highly coincident with the onset of modern-like global atmospheric CO_(2) concentration,we are forced to consider that they also had a significant impact on the reduction of atmospheric CO_(2) concentrations at this time.Conclusions“Trigger-connectors”was put forward to explain the Cenozoic CO_(2) variation,especially modern-like global CO_(2) concentration since about 24 Ma.Recommendations and perspectives Here we use the“trigger-connectors”model to explain the formation of modern-like CO_(2) concentrations starting at about 24 Ma,but there are still some problems.The most important premise for the“trigger-connectors”model is the constructed Cenozoic CO_(2) concentration record is reliable,which is the foundation of our hypothesis.In the future,potential improvements should focus on topographic reconstructions of Xizang and the global mountains.Here we have concentrated on Xizang in the considered timeslices but still,pay less attention to other global orogenic belts.Collaborations with geologist experts in those regions could provide valuable feedback to evaluate their potential role of them in CO_(2) evolution.What is more,considerable progress may be achieved with the addition and consideration of more and new geological data.
文摘This study examined the mechanisms for improving the adhesion performance of the asphalt-aggregate interface with two anti-stripping agents and two coupling agents.The investigation of contact behavior between various asphalt-aggregate surfaces was conducted using molecular dynamics(MD)simulations.The interaction energy and the relative concentration distribution were employed as the parameters to analyze the enhancement mechanisms of anti-stripping agents and coupling agents on the asphalt-aggregate interface.Results indicated that the adhesion at the asphalt-aggregate interface could be strengthened by both anti-stripping agents and coupling agents.Anti-stripping agents primarily improve adhesion through the reinforcement of electrostatic attraction,while coupling agents primarily upgrade adhesion by strengthening the van der Waals.Hence,the molecular dynamics modeling and calculation techniques presented in this study can be utilized to elucidate the development mechanism of the asphalt-aggregate interface through the use of anti-stripping agents and coupling agents.
文摘Because of its high purity and excellent orientation, mesophase pitch is a superior precursor for high-performance car-bon materials. However, the preparation of top-notch mesophase pitch faces challenges. Catalytic polycondensation at low temperat-ures is more favorable for synthesizing mesophase pitch, because it circumvents the high-temperature free radical reaction of other thermal polycondensation approaches. The reaction is gentle and can be easily controlled. It has the potential to significantly im-prove the yield of mesophase pitch and easily introduce naphthenic characteristics into the molecules, catalytic polycondensation is therefore a preferred method of synthesizing highly spinnable mesophase pitch. This review provides a synopsis of the selective pre-treatment of the raw materials to prepare different mesophase pitches, and explains the reaction mechanism and associated research advances for different catalytic systems in recent years. Finally, how to manufacture high-quality mesophase pitch by using a cata-lyst-promoter system is summarized and proposed, which may provide a theoretical basis for the future design of high-quality pitch molecules.
基金National Administration of Traditional Chinese Medicine Evidence-Based Capacity Building Project(2019XZZXXH005)Special Project on Traditional Chinese Medicine Scientific Research of Health Commission of Henan Province(2022ZY2022)+1 种基金Henan Provincial Top Talents Cultivation Project in Traditional Chinese Medicine Discipline of Henan Provincial Traditional Chinese Medicine Inheritance and Innovation Talents Project(Zhongjing Project)(Henan Health TraditionalMedicine Letter[2021]No.15)Special Project on Traditional Chinese Medicine Scientific Research of Health Commission of Henan Province(2023ZY2062).
文摘Objective To evaluate the clinical efficacy and safety of Zhenzhu Qingyuan Granules through a clinical randomized controlled trial and to analyze the potential action targets and pathways of this formula using network pharmacology.Methods Patients with gastroesophageal reflux disease(GERD)of liver–stomach stagnant heat pattern who met the inclusion and exclusion criteria were randomly divided into the control group and the observation group.The control group received oral rabeprazole,whereas the observation group were given Zhenzhu Qingyuan Granules in addition to the rabeprazole.The treatment duration was 8 weeks.Clinical efficacy was observed in both groups after 8 weeks.Network pharmacology was used to analyze the action targets of ZhenzhuQingyuanGranules and the genes related to GERD,and core targets were inferred.Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were conducted to explore the potential mechanisms of this formula.Results The clinical research results showed that the total effective rate in the treatment group was 92.68%,compared with 70.00%in the control group,with a statistically significant difference(p<0.05).After treatment,both Chinese medicine syndrome score and endoscopic score improved in both groups compared with before treatment(p<0.05),and the treatment group showed greater improvement than the control group(p<0.05).Network pharmacology identified effective components of Zhenzhu Qingyuan Granules for treating GERD,including quercetin,luteolin,andβ-sitosterol,with potential action targets such as tumor protein 53(TP53),protein kinase B(AKT1),and tumor necrosis factor.Conclusion Zhenzhu Qingyuan Granules can significantly improve clinical symptoms in patients with GERD of liver–stomach stagnated heat pattern,enhance clinical efficacy,and have high safety.This formula may exert therapeutic effects through multiple targets and pathways.