A typhoon-induced storm surge simulation system was developed for the Qingdao area, including a typhoon diagnostic model for the generation of wind and pressure fields and a 2D Advanced Circulation(ADCIRC) model for s...A typhoon-induced storm surge simulation system was developed for the Qingdao area, including a typhoon diagnostic model for the generation of wind and pressure fields and a 2D Advanced Circulation(ADCIRC) model for simulating the associated storm surge with a 200 m resolution along the Qingdao coastline. The system was validated by an extreme surge event Typhoon Mamie(8509) and the parameters of Typhoon Mamie were used to investigate the sensitivity of typhoon paths to Qingdao storm surges with four selected paths: the paths of Typhoons Mamie(8509), Opal, 3921 and 2413, the selection being made according to their relative position to Qingdao. Experiments based on the Typhoon Mamie(8509) storm surge were also conducted to study the possible influences of future climate changes, including the sea level rise and sea surface temperature(SST) rise, on storm surges along the Qingdao coast. Storm surge conditions under both present day and future(the end of the 21 st century) climate scenarios associated with the four selected paths were simulated. The results show that with the same intensity, when typhoons follow the paths of 3921 and 2413, they would lead to the most serious disasters in different areas of Qingdao. Sea level and SST affect storm surges in different ways: sea level rise affects storm surge mainly through its influence on the tide amplitude, while the increased SST has direct impact on the intensity of the surges. The possible maximum risk of storm surges in 2100 in the Qingdao area caused by typhoons like Mamie(8509) was also estimated in this study.展开更多
The characteristics of the permafrost along National Highway No. 214(G214) in Qinghai province(between kilometer markers K310 and K670),including the distribution patterns of permafrost and seasonally frozen ground(SF...The characteristics of the permafrost along National Highway No. 214(G214) in Qinghai province(between kilometer markers K310 and K670),including the distribution patterns of permafrost and seasonally frozen ground(SFG), ground ice content and mean annual ground temperature(MAGT), were analyzed using a large quantity of drilling and measured ground temperature data. Three topographic units can be distinguished along the highway: the northern mountains, including Ela Mountain and Longstone Mountain; the medial alluvial plain and the southern Bayan Har Mountains.The horizontal distribution patterns of permafrost can be divided into four sections, from north to south: the northern continuous permafrost zone(K310-K460),the island permafrost zone(K460-K560), the southern continuous permafrost zone(K560-K630),and the discontinuous permafrost zone(K630-K670).Vertically, the permafrost lower limits(PLLs) of the discontinuous zone were 4200/4325 m, 4230/4350 m,and 4350/4450 m on the north-facing/south-facing slopes of Ela Mountain, Longstone Mountain and Bayan Har Mountains, respectively. The permafrost was generally warm, with MAGTs between-1.0°C and0°C in the northern continuous permafrost zone,approximately-0.5°C in the island permafrost zone,between-1.5°C and 0°C in the southern continuous permafrost zone, and higher than-0.5°C in the discontinuous permafrost zone. In contrast, the spatial variations in ground ice content were mainly controlled by the local soil water content and lithology.The relationships between the mean annual air temperature(MAAT) and the PLLs indicated that the PLLs varied between-3.3°C and-4.1°C for the northern Ela and Longstone Mountains and between-4.1°C and-4.6°C in the southern Bayan Har Mountains.展开更多
基金supported by the Marine Industry Research Special Funds for Public Welfare Projects (No. 200905013)
文摘A typhoon-induced storm surge simulation system was developed for the Qingdao area, including a typhoon diagnostic model for the generation of wind and pressure fields and a 2D Advanced Circulation(ADCIRC) model for simulating the associated storm surge with a 200 m resolution along the Qingdao coastline. The system was validated by an extreme surge event Typhoon Mamie(8509) and the parameters of Typhoon Mamie were used to investigate the sensitivity of typhoon paths to Qingdao storm surges with four selected paths: the paths of Typhoons Mamie(8509), Opal, 3921 and 2413, the selection being made according to their relative position to Qingdao. Experiments based on the Typhoon Mamie(8509) storm surge were also conducted to study the possible influences of future climate changes, including the sea level rise and sea surface temperature(SST) rise, on storm surges along the Qingdao coast. Storm surge conditions under both present day and future(the end of the 21 st century) climate scenarios associated with the four selected paths were simulated. The results show that with the same intensity, when typhoons follow the paths of 3921 and 2413, they would lead to the most serious disasters in different areas of Qingdao. Sea level and SST affect storm surges in different ways: sea level rise affects storm surge mainly through its influence on the tide amplitude, while the increased SST has direct impact on the intensity of the surges. The possible maximum risk of storm surges in 2100 in the Qingdao area caused by typhoons like Mamie(8509) was also estimated in this study.
基金supported financially by the Chinese Academy of Sciences (CAS) Key Research Program (Grant No. KZZD-EW-13)the Major State Basic Research Development Program of China (Grant No. 2013CBA01803)+2 种基金the National Natural Science Foundation of China (Grant No. 41271084)the Research Program of State Key Laboratory of Frozen Soil Engineering of Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences (Grant No. SKLFSE-ZT-10)the Natural Science Foundation of Gansu Province (Grant No. 145RJY304)
文摘The characteristics of the permafrost along National Highway No. 214(G214) in Qinghai province(between kilometer markers K310 and K670),including the distribution patterns of permafrost and seasonally frozen ground(SFG), ground ice content and mean annual ground temperature(MAGT), were analyzed using a large quantity of drilling and measured ground temperature data. Three topographic units can be distinguished along the highway: the northern mountains, including Ela Mountain and Longstone Mountain; the medial alluvial plain and the southern Bayan Har Mountains.The horizontal distribution patterns of permafrost can be divided into four sections, from north to south: the northern continuous permafrost zone(K310-K460),the island permafrost zone(K460-K560), the southern continuous permafrost zone(K560-K630),and the discontinuous permafrost zone(K630-K670).Vertically, the permafrost lower limits(PLLs) of the discontinuous zone were 4200/4325 m, 4230/4350 m,and 4350/4450 m on the north-facing/south-facing slopes of Ela Mountain, Longstone Mountain and Bayan Har Mountains, respectively. The permafrost was generally warm, with MAGTs between-1.0°C and0°C in the northern continuous permafrost zone,approximately-0.5°C in the island permafrost zone,between-1.5°C and 0°C in the southern continuous permafrost zone, and higher than-0.5°C in the discontinuous permafrost zone. In contrast, the spatial variations in ground ice content were mainly controlled by the local soil water content and lithology.The relationships between the mean annual air temperature(MAAT) and the PLLs indicated that the PLLs varied between-3.3°C and-4.1°C for the northern Ela and Longstone Mountains and between-4.1°C and-4.6°C in the southern Bayan Har Mountains.